No Arabic abstract
We consider a zero-temperature one-dimensional system of bosons interacting via the soft-shoulder potential in the continuum, typical of dressed Rydberg gases. We employ quantum Monte Carlo simulations, which allow for the exact calculation of imaginary-time correlations, and a stochastic analytic continuation method, to extract the dynamical structure factor. At finite densities, in the weakly-interacting homogeneous regime, a rotonic spectrum marks the tendency to clustering. With strong interactions, we indeed observe cluster liquid phases emerging, characterized by the spectrum of a composite harmonic chain. Luttinger theory has to be adapted by changing the reference lattice density field. In both the liquid and cluster liquid phases, we find convincing evidence of a secondary mode, which becomes gapless only at the transition. In that region, we also measure the central charge and observe its increase towards c = 3/2, as recently evaluated in a related extended Bose-Hubbard model, and we note a fast reduction of the Luttinger parameter. For 2-particle clusters, we then interpret such observations in terms of the compresence of a Luttinger liquid and a critical transverse Ising model, related to the instability of the reference lattice density field towards coalescence of sites, typical of potentials which are flat at short distances. Even in the absence of a true lattice, we are able to evaluate the spatial correlation function of a suitable pseudo-spin operator, which manifests ferromagnetic order in the cluster liquid phase, exponential decay in the liquid phase, and algebraic order at criticality.
We investigate the temperature-dependent behavior emerging in the vicinity of the superfluid (SF) to Mott insulator (MI) transition of interacting bosons in a two-dimensional optical lattice, described by the Bose-Hubbard model. The equilibrium phase diagram at finite temperatures is computed by means of the cluster mean-field theory (CMF) where the effect of non-local correlations is analyzed systematically by finite-size scaling of the cluster size. The phase diagram exhibits a rich structure including a transition and a crossover of the SF and MI phases respectively to a normal fluid (NF) state at finite temperature. In order to characterize these phases, and the NF transition and crossover scales, we calculate, in addition to the condensate amplitude, the superfluid fraction, sound velocity and compressibility. The phase boundaries obtained by CMF with finite-size scaling agree quantitatively with quantum Monte Carlo (QMC) results as well as with experiments. The von Neumann entanglement entropy of a cluster exhibits critical enhancement near the SF-MI quantum critical point (QCP). We also discuss the behavior of the transition lines near this QCP at the particle-hole symmetric point located at the tip of a Mott lobe as well as away from particle-hole symmetry.
One-dimensional bosons interacting via a soft-shoulder potential are investigated at zero temperature. The flatness of the potential at short distances introduces a typical length, such that, at relatively high densities and sufficiently strong interactions, clusters are formed, even in the presence of a completely repulsive potential. We evaluate the static density response function of this system across the transition from the liquid to the cluster liquid phases. Such quantity reveals the density modulations induced by a weak periodic external potential, and is maximal at the clustering wavevector. It is known that this response function is proportional to the static structure factor in the classical regime at high temperature, while for this zero-temperature quantum systems, we extract it from the dynamical structure factor evaluated with quantum Monte Carlo methods.
We study static properties and the dynamical structure factor of zero-temperature dilute bosons interacting via a soft-shoulder potential in one dimension. Our approach is fully microscopic and employs state-of-the-art quantum Monte Carlo and analytic continuation techniques. By increasing the interaction strength, our model reproduces the Lieb-Liniger gas, the Tonks-Girardeau and the Hard-Rods models.
As the temperature of a many-body system approaches absolute zero, thermal fluctuations of observables cease and quantum fluctuations dominate. Competition between different energies, such as kinetic energy, interactions or thermodynamic potentials, can induce a quantum phase transition between distinct ground states. Near a continuous quantum phase transition, the many-body system is quantum critical, exhibiting scale invariant and universal collective behavior cite{Coleman05Nat, Sachdev99QPT}. Quantum criticality has been actively pursued in the study of a broad range of novel materials cite{vdMarel03Nat, Lohneysen07rmp, G08NatPhys, Sachdev08NatPhys}, and can invoke new insights beyond the Landau-Ginzburg-Wilson paradigm of critical phenomena cite{Senthil04prb}. It remains a challenging task, however, to directly and quantitatively verify predictions of quantum criticality in a clean and controlled system. Here we report the observation of quantum critical behavior in a two-dimensional Bose gas in optical lattices near the vacuum-to-superfluid quantum phase transition. Based on textit{in situ} density measurements, we observe universal scaling of the equation of state at sufficiently low temperatures, locate the quantum critical point, and determine the critical exponents. The universal scaling laws also allow determination of thermodynamic observables. In particular, we observe a finite entropy per particle in the critical regime, which only weakly depends on the atomic interaction. Our experiment provides a prototypical method to study quantum criticality with ultracold atoms, and prepares the essential tools for further study on quantum critical dynamics.
By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is found to be well-described by a single oscillation frequency and a damping rate. If the impurity is very weakly coupled to the bath, a Luttinger-liquid description is valid and the impurity suffers an Abraham-Lorentz radiation-reaction friction. For a large portion of the explored parameter space, the TDMRG results fall well beyond the Luttinger-liquid paradigm.