We report on fixed phase diffusion Monte Carlo calculations that show that, even for a large amount of Landau level mixing, the energies of the Pfaffian and anti-Pfaffian phases remain very nearly the same, as also do the excitation gaps at $1/3$ and $2/3$. These results, combined with previous theoretical and experimental investigations, indicate that particle hole (PH) symmetry for composite fermion states is much more robust than a priori expected, emerging even in models that explicitly break PH symmetry. We provide insight into this fact by showing that the low energy physics of a generic repulsive 3-body interaction is captured, to a large extent and over a range of filling factors, by a mean field approximation that maps it into a PH symmetric 2-body interaction. This explains why Landau level mixing, which effectively generates such a generic 3-body interaction, is inefficient in breaking PH symmetry. As a byproduct, our results provide a systematic construction of a 2-body interaction which produces, to a good approximation, the Pfaffian wave function as its ground state.