Do you want to publish a course? Click here

Seoul National University Camera II (SNUCAM-II): The New SED Camera for the Lee Sang Gak Telescope (LSGT)

82   0   0.0 ( 0 )
 Added by Changsu Choi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the characteristics and the performance of the new CCD camera system, SNUCAM-II (Seoul National University CAMera system II) that was installed on the Lee Sang Gak Telescope (LSGT) at the Siding Spring Observatory in 2016. SNUCAM-II consists of a deep depletion chip covering a wide wavelength from 0.3 {mu}m to 1.1 {mu}m with high sensitivity (QE at > 80% over 0.4 to 0.9 {mu}m). It is equipped with the SDSS ugriz filters and 13 medium band width (50 nm) filters, enabling us to study spectral energy distributions (SEDs) of diverse objects from extragalactic sources to solar system objects. On LSGT, SNUCAM-II offers 15.7 {times} 15.7 arcmin field-of-view (FOV) at a pixel scale of 0.92 arcsec and a limiting magnitude of g = 19.91 AB mag and z=18.20 AB mag at 5{sigma} with 180 sec exposure time for point source detection.



rate research

Read More

We introduce the Lee Sang Gak Telescope (LSGT), a remotely operated, robotic 0.43-meter telescope. The telescope was installed at the Siding Spring Observatory, Australia, in 2014 October, to secure regular and exclusive access to the dark sky and excellent atmospheric conditions in the southern hemisphere from the Seoul National University (SNU) campus. Here, we describe the LSGT system and its performance, present example images from early observations, and discuss a future plan to upgrade the system. The use of the telescope includes (i) long-term monitoring observations of nearby galaxies, active galactic nuclei, and supernovae; (ii) rapid follow-up observations of transients such as gamma-ray bursts and gravitational wave sources; and (iii) observations for educational activities at SNU. Based on observations performed so far, we find that the telescope is capable of providing images to a depth of R=21.5 mag (point source detection) at 5-sigma with 15 min total integration time under good observing conditions.
210 - C.C. Hsu , A. Dettlaff , D. Fink 2007
The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope within the year 2007. The camera of MAGIC-II will include several new features compared to the MAGIC-I camera. Photomultipliers with the highest available photon collection efficiency have been selected. A modular design allows easier access and flexibility to test new photodetector technologies. The camera will be uniformly equipped with 0.1 degree diamter pixels, which allows the use of an increased trigger area. Finally, the overall signal chain features a large bandwidth to retain the shape of the very fast Cherenkov signals.
Active galactic nuclei (AGNs) show a correlation between the size of the broad line region (BLR) and the monochromatic continuum luminosity at 5100 AA, allowing black hole mass estimation based on single-epoch spectra. However, the validity of the correlation is yet to be clearly tested for high-luminosity AGNs. We present the first reverberation-mapping results of the Seoul National University AGN monitoring program (SAMP), which is designed to focus on luminous AGNs for probing the high end of the size-luminosity relation. We report time lag measurements of two AGNs, namely, 2MASS J10261389+5237510 and SDSS J161911.24+501109.2, using the light curves obtained over a $sim$1000 day period with an average cadence of $sim$10 and $sim$20 days, respectively for photometry and spectroscopy monitoring. Based on a cross-correlation analysis and H$beta$ line width measurements, we determine the H$beta$ lag as $41.8^{+4.9}_{-6.0}$ and $52.6^{+17.6}_{-14.7}$ days in the observed-frame, and black hole mass as $3.65^{+0.49}_{-0.57} times 10^7 M_{odot}$ and $23.02^{+7.81}_{-6.56} times 10^7 M_{odot}$, respectively for 2MASS J1026 and SDSS J1619.
MAGIC comprises two 17m diameter IACTs to be operated in stereo mode. Currently we are commissioning the second telescope, MAGIC II. The camera of the second telescope has been equipped with 1039 pixels of 0.1-degree diameter. Always seven pixels are grouped in a hexagonal configuration to form a cluster. This modular design allows easier control and maintenance of the camera. The pixel sensors are high quantum efficiency photomultiplier tubes (PMTs) from Hamamatsu (superbialkali type, QE ~ 32% at the peak wavelength) that we operate at rather low gain of 30 k. This allows us to also perform extended observations under moderate moonlight. The system of two MAGIC telescopes will at least double the sensitivity compared to MAGIC I and also will allow us to lower the energy threshold.Here we will report the performances of the Camera of the second MAGIC telescope.
125 - T. Baug , D.K. Ojha , S.K. Ghosh 2018
TIFR Near Infrared Imaging Camera-II is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512 x 512 pixels InSb Aladdin III Quadrant focal plane array having sensitivity to photons in the 1-5 microns wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6-m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view of ~86.5 arcsec x 86.5 arcsec on the DOT with a pixel scale of 0.169 arcsec. The seeing at the telescope site in the near-infrared bands is typically sub-arcsecond with the best seeing of ~0.45 arcsec realized in the near-infrared K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4-m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4 microns) magnitudes of 9.2 in the narrow L-band (nbL; lambda_{cen} ~3.59 microns). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera ([3.6] <= 7.92 mag) and the WISE W1-band ([3.4] <= 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3 microns are also detected. Details of the observations and estimated parameters are presented in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا