Do you want to publish a course? Click here

Freely Expanding Knots of X-ray Emitting Ejecta in Keplers Supernova Remnant

118   0   0.0 ( 0 )
 Added by Jack Hughes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report measurements of proper motion, radial velocity, and elemental composition for 14 X-ray knots in Keplers supernova remnant (SNR) using Chandra data. The highest speed knots show both large proper motions (0.11-0.14 /yr) and high radial velocities (v ~ 8,700--10,020 km/s) with estimated space velocities comparable to the typical Si velocity (~10,000 km/s) seen in SN Ia near maximum light. High speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Keplers SNR to a consistent central position that agrees well with previous determinations, but is less subject to systematic errors. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 <~ m <~ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through relatively low density (n_H < 0.1 cm^-3) regions in the ambient medium. X-ray spectral analysis shows that the undecelerated knots have high Si and S abundances, a lower Fe abundance and very low O abundance, pointing to an origin in the partial Si-burning zone, which occurs in the outer layer of the exploding white dwarf for SN Ia models. Other knots show slower speeds and expansion indices consistent with decelerated ejecta knots or features in the ambient medium overrun by the forward shock. Our new accurate location for the explosion site has well-defined positional uncertainties allowing for a great reduction in the area to be searched for faint surviving donor stars under non-traditional single-degenerate SN Ia scenarios; because of the lack of bright stars in the search area the traditional scenario remains ruled out.



rate research

Read More

We present results from {it XMM-Newton/RGS} observations of prominent knots in the southest portion of Tychos supernova remnant, known to be the remnant of a Type Ia SN in 1572 C.E. By dispersing the photons from these knots out of the remnant with very little emission in front of or behind them, we obtained the nearly uncontaminated spectra of the knots. In the southernmost knot, the RGS successfully resolved numerous emission lines from Si, Ne, O He$alpha$ and Ly$alpha$, and Fe L-shell. This is the first clear detection of O lines in Tychos SNR. Line broadening was measured to be $sim 3$ eV for the O He$alpha$ and $sim 4.5$ eV for Fe L lines. If we attribute the broadening to pure thermal Doppler effects, then we obtain kT$_{O}$ and kT$_{Fe}$ to be $sim 400$ keV and 1.5 MeV, respectively. These temperatures can be explained by heating in a reverse shock with a shock velocity of $sim 3500$ km s$^{-1}$. The abundances obtained from fitting the RGS and MOS data together imply substantially elevated amounts of these materials, confirming previous studies that the knots are heated by a reverse shock, and thus contain ejecta material from the supernova. We are unable to find a Type Ia explosion model that reproduces these abundances, but this is likely the result of this knot being too small to extrapolate to the entire remnant.
178 - S. Katsuda 2008
We report on the discovery of fast-moving X-ray--emitting ejecta knots in the Galactic Oxygen-rich supernova remnant Puppis A from XMM-Newton observations. We find an X-ray knotty feature positionally coincident with an O-rich fast-moving optical filament with blue-shifted line emission located in the northeast of Puppis A. We extract spectra from northern and southern regions of the feature. Applying a one-component non-equilibrium ionization model for the two spectra, we find high metal abundances relative to the solar values in both spectra. This fact clearly shows that the feature originates from metal-rich ejecta. In addition, we find that line emission in the two regions is blue-shifted. The Doppler velocities derived in the two regions are different with each other, suggesting that the knotty feature consists of two knots that are close to each other along the line of sight. Since fast-moving O-rich optical knots/filaments are believed to be recoiled metal-rich ejecta, expelled to the opposite direction against the high-velocity central compact object, we propose that the ejecta knots disclosed here are also part of the recoiled material.
108 - Jacco Vink 2016
Supernova 1604 is the last Galactic supernova for which historical records exist. Johannes Keplers name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a Type Ia supernova, which exploded 350 pc to 750 pc above the Galactic plane. Its supernova remnant, known as Keplers supernova remnant, shows clear evidence for interaction with nitrogen-rich material in the north/northwest part of the remnant, which, given the height above the Galactic plane, must find its origin in mass loss from the supernova progenitor system. The combination of a Type Ia supernova and the presence of circumstellar material makes Keplers supernova remnant a unique object to study the origin of Type Ia supernovae. The evidence suggests that the progenitor binary system of supernova 1604 consisted of a carbon- oxygen white dwarf and an evolved companion star, which most likely was in the (post) asymptotic giant branch of its evolution. A problem with this scenario is that the companion star must have survived the explosion, but no trace of its existence has yet been found, despite a deep search. 1 Introduction; 2 The supernova remnant, its distance and multiwavelength properties; 2.1 Position, distance estimates and SN1604 as a runaway system; 2.2 X-ray imaging spectroscopy and SN1604 as a Type Ia supernova 2.3 The circumstellar medium as studied in the optical and infrared; 3 The dynamics of Keplers SNR; 3.1 Velocity measurements; 3.2 Hydrodynamical simulations; 4 The progenitor system of SN 1604; 4.1 Elevated circumstellar nitrogen abundances, silicates and a single degenerate scenario for SN1604; 4.2 Problems with a single degenerate Type Ia scenario for SN 1604; 4.3 Was SN 1604 a core-degenerate Type Ia explosion?; 4.4 What can we learn from the historical light curve of SN 1604? ; 5 Conclusions
We report our measurements of the bulk radial velocity from a sample of small, metal-rich ejecta knots in Keplers Supernova Remnant (SNR). We measure the Doppler shift of the He-like Si K$alpha$ line center energy in the spectra of these knots based on our $Chandra$ High-Energy Transmission Grating Spectrometer (HETGS) observation to estimate their radial velocities. We estimate high radial velocities of up to $sim$ 8,000 km s$^{-1}$ for some of these ejecta knots. We also measure proper motions for our sample based on the archival $Chandra$ Advanced CCD Imaging Spectrometer (ACIS) data taken in 2000, 2006, and 2014. Our measured radial velocities and proper motions indicate that some of these ejecta knots are almost freely-expanding after $sim$ 400 years since the explosion. The fastest moving knots show proper motions up to $sim$ 0.2 arcseconds per year. Assuming that these high velocity ejecta knots are traveling ahead of the forward shock of the SNR, we estimate the distance to Keplers SNR $d$ $sim$ 4.4 to 7.5 kpc. We find that the ejecta knots in our sample have an average space velocity of $ v_{s} sim$ 4,600 km s$^{-1}$ (at a distance of 6 kpc). We note that 8 out of the 15 ejecta knots from our sample show a statistically significant (at the 90$%$ confidence level) redshifted spectrum, compared to only two with a blueshifted spectrum. This may suggest an asymmetry in the ejecta distribution in Keplers SNR along the line of sight, however a larger sample size is required to confirm this result.
We report on the results from the analysis of our 114 ks Chandra HETGS observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the 3D structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of -2300 <~ v_r <~ 1400 km s^-1. The distribution of ejecta knots in velocity vs. projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ~90 (corresponding to ~3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ~4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10^51 erg, we estimate the total ejecta mass to be <~ 8 M_sun, and we propose an upper limit of <~ 35 M_sun on the progenitors mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا