Do you want to publish a course? Click here

Modeling The Most Luminous Supernova Associated with a Gamma-Ray Burst, SN 2011kl

426   0   0.0 ( 0 )
 Added by Zigao Dai
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the most luminous known supernova (SN) associated with a gamma-ray burst (GRB), SN 2011kl. The photospheric velocity of SN 2011kl around peak brightness is $21,000pm7,000$ km s$^{-1}$. Owing to different assumptions related to the light-curve (LC) evolution (broken or unbroken power-law function) of the optical afterglow of GRB 111209A, different techniques for the LC decomposition, and different methods (with or without a near-infrared contribution), three groups derived three different bolometric LCs for SN 2011kl. Previous studies have shown that the LCs without an early-time excess preferred a magnetar model, a magnetar+$^{56}$Ni model, or a white dwarf tidal disruption event model rather than the radioactive heating model. On the other hand, the LC shows an early-time excess and dip that cannot be reproduced by the aforementioned models, and hence the blue-supergiant model was proposed to explain it. Here we reinvestigate the energy sources powering SN 2011kl. We find that the two LCs without the early-time excess of SN 2011kl can be explained by the magnetar+$^{56}$Ni model, and the LC showing the early excess can be explained by the magnetar+$^{56}$Ni model taking into account the cooling emission from the shock-heated envelope of the SN progenitor, demonstrating that this SN might primarily be powered by a nascent magnetar.



rate research

Read More

A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts or in the tidal disruptions of a star. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
We report the discovery of the nearby long, soft GRB 100316D, and the subsequent unveiling of its host galaxy and associated supernova. We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that a thermal component in addition to the synchrotron spectrum is required. The host galaxy is a bright, blue galaxy with a highly disturbed morphology. From optical photometry and spectroscopy we provide an accurate astrometry and redshift, and derive the key host properties of star formation rate and stellar age. We compare our findings for this GRB-SN with the well known previous case of GRB 060218. GRB 100316D is an important addition to the current sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.
GRB 111209A, one of the longest Gamma-Ray Bursts (GRBs) ever observed, is linked to SN 2011kl, the most luminous GRB-Supernova (SN) detected so far, which shows evidence for being powered by a magnetar central engine. We place SN 2011kl into the context of large samples of SNe, addressing in more detail the question of whether it could be radioactively powered, and whether it represents an extreme version of a GRB-SN or an underluminous Superluminous SN (SLSN). We model SN 2011kl using SN 1998bw as a template and derive a bolometric light curve including near-infrared data. We compare the properties of SN 2011kl to literature results on stripped-envelope and superluminous supernovae. Comparison in the k,s context, i.e., comparing it to SN 1998bw templates in terms of luminosity and light-curve stretch, clearly shows SN 2011kl is the most luminous GRB-SN to date, and it is spectrally very dissimilar to other events, being significantly bluer/hotter. Although SN 2011kl does not reach the classical luminosity threshold of SLSNe and evolves faster than any of them, it resembles SLSNe more than the classical GRB-associated broad-lined Type Ic SNe in several aspects. GRB 111209A was a very energetic event, both at early (prompt emission) and at very late (SN) times. We have shown in a further publication that with the exception of the extreme duration, the GRB and afterglow parameters are in agreement with the known distributions for these parameters. SN 2011kl, on the other hand, is exceptional both in luminosity and spectral characteristics, indicating that GRB 111209A was likely not powered by a standard-model collapsar central engine, further supporting our earlier conclusions. Instead, it reveals the possibility of a direct link between GRBs and SLSNe.
124 - A. Melandri , E. Pian , V. DElia 2014
Long-duration gamma-ray bursts (GRBs) have been found to be associated with broad-lined type-Ic supernovae (SNe), but only a handful of cases have been studied in detail. Prompted by the discovery of the exceptionally bright, nearby GRB130427A (redshift z=0.3399), we aim at characterising the properties of its associated SN2013cq. This is the first opportunity to test directly the progenitors of high-luminosity GRBs. We monitored the field of the Swift long duration GRB130427A using the 3.6-m TNG and the 8.2-m VLT during the time interval between 3.6 and 51.6 days after the burst. Photometric and spectroscopic observations revealed the presence of the type Ic SN2013cq. Spectroscopic analysis suggests that SN2013cq resembles two previous GRB-SNe, SN1998bw and SN2010bh associated with GRB980425 and XRF100316D, respectively. The bolometric light curve of SN2013cq, which is significantly affected by the host galaxy contribution, is systematically more luminous than that of SN2010bh ($sim$ 2 mag at peak), but is consistent with SN1998bw. The comparison with the light curve model of another GRB-connected SN2003dh, indicates that SN2013cq is consistent with the model when brightened by 20%. This suggests a synthesised radioactive $^{56}$Ni mass of $sim 0.4 M_odot$. GRB130427A/SN2013cq is the first case of low-z GRB-SN connection where the GRB energetics are extreme ($E_{rm gamma, iso} sim 10^{54}$ erg). We show that the maximum luminosities attained by SNe associated with GRBs span a very narrow range, but those associated with XRFs are significantly less luminous. On the other hand the isotropic energies of the accompanying GRBs span 6 orders of magnitude (10$^{48}$ erg $< E_{rm gamma, iso} <$ 10$^{54}$ erg), although this range is reduced when corrected for jet collimation. The GRB total radiated energy is in fact a small fraction of the SN energy budget.
A preponderance of evidence links long-duration, soft-spectrum gamma-ray bursts (GRBs) with the death of massive stars. The observations of the GRB-supernova (SN) connection present the most direct evidence of this physical link. We summarize 30 GRB-SN associations and focus on five ironclad cases, highlighting the subsequent insight into the progenitors enabled by detailed observations. We also address the SN association (or lack thereof) with several sub-classes of GRBs, finding that the X-ray Flash (XRF) population is likely associated with massive stellar death whereas short-duration events likely arise from an older population not readily capable of producing a SN concurrent with a GRB. Interestingly, a minority population of seemingly long-duration, soft-spectrum GRBs show no evidence for SN-like activity; this may be a natural consequence of the range of Ni-56 production expected in stellar deaths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا