We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use the same approach as is commonly employed in black-hole perturbation theory by introducing a relativistic parameterization of the dynamics that is defined by the orbital geometry and consists of a set of phase variables and quantities that evolve only due to gravitational radiation reaction. Specializing to nonspinning binaries, we derive the EOB evolution equations and compute the binarys radiative multipole moments that determine the gravitational waves through a decomposition into the fundamental frequencies of the motion. The major differences between our treatment and the quasi-Keplerian approach often used in post-Newtonian (PN) calculations are that the orbital parameters describe strong-field dynamics, and that expressing the multipole moments in terms of the frequencies simplifies the calculations and also results in an unambiguous orbit-averaging operation. While our description of the conservative dynamics is fully relativistic, we limit explicit derivations in the radiative sector to 1.5PN order for simplicity. This already enables us to establish methods for computing both instantaneous and hereditary contributions to the gravitational radiation in EOB coordinates that have straightforward extensions to higher PN order. The weak-field, small eccentricity limit of our results for the orbit-averaged fluxes of energy and angular momentum agrees with known PN results when expressed in terms of gauge-invariant quantities. We further address considerations for the numerical implementation of the model and the completion of the waveforms to include the merger and ringdown signals, and provide illustrative results.