Do you want to publish a course? Click here

Estimating parameters associated with monotone properties

128   0   0.0 ( 0 )
 Added by Henrique Stagni
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

There has been substantial interest in estimating the value of a graph parameter, i.e., of a real-valued function defined on the set of finite graphs, by querying a randomly sampled substructure whose size is independent of the size of the input. Graph parameters that may be successfully estimated in this way are said to be testable or estimable, and the sample complexity $q_z=q_z(epsilon)$ of an estimable parameter $z$ is the size of a random sample of a graph $G$ required to ensure that the value of $z(G)$ may be estimated within an error of $epsilon$ with probability at least 2/3. In this paper, for any fixed monotone graph property $mathcal{P}=mbox{Forb}(mathcal{F})$, we study the sample complexity of estimating a bounded graph parameter $z_{mathcal{P}}$ that, for an input graph $G$, counts the number of spanning subgraphs of $G$ that satisfy $mathcal{P}$. To improve upon previous upper bounds on the sample complexity, we show that the vertex set of any graph that satisfies a monotone property $mathcal{P}$ may be partitioned equitably into a constant number of classes in such a way that the cluster graph induced by the partition is not far from satisfying a natural weighted graph generalization of $mathcal{P}$. Properties for which this holds are said to be recoverable, and the study of recoverable properties may be of independent interest.



rate research

Read More

Given a family of graphs $mathcal{F}$, we prove that the normalized edit distance of any given graph $Gamma$ to being induced $mathcal{F}$-free is estimable with a query complexity that depends only on the bounds of the Frieze--Kannan Regularity Lemma and on a Removal Lemma for $mathcal{F}$.
We investigate how minor-monotone graph parameters change if we add a few random edges to a connected graph $H$. Surprisingly, after adding a few random edges, its treewidth, treedepth, genus, and the size of a largest complete minor become very large regardless of the shape of $H$. Our results are close to best possible for various cases.
An intersection digraph is a digraph where every vertex $v$ is represented by an ordered pair $(S_v, T_v)$ of sets such that there is an edge from $v$ to $w$ if and only if $S_v$ and $T_w$ intersect. An intersection digraph is reflexive if $S_vcap T_v eq emptyset$ for every vertex $v$. Compared to well-known undirected intersection graphs like interval graphs and permutation graphs, not many algorithmic applications on intersection digraphs have been developed. Motivated by the successful story on algorithmic applications of intersection graphs using a graph width parameter called mim-width, we introduce its directed analogue called `bi-mim-width and prove that various classes of reflexive intersection digraphs have bounded bi-mim-width. In particular, we show that as a natural extension of $H$-graphs, reflexive $H$-digraphs have linear bi-mim-width at most $12|E(H)|$, which extends a bound on the linear mim-width of $H$-graphs [On the Tractability of Optimization Problems on $H$-Graphs. Algorithmica 2020]. For applications, we introduce a novel framework of direct
We study the problem of maximizing a non-monotone submodular function under multiple knapsack constraints. We propose a simple discrete greedy algorithm to approach this problem, and prove that it yields strong approximation guarantees for functions with bounded curvature. In contrast to other heuristics, this requires no problem relaxation to continuous domains and it maintains a constant-factor approximation guarantee in the problem size. In the case of a single knapsack, our analysis suggests that the standard greedy can be used in non-monotone settings. Additionally, we study this problem in a dynamic setting, by which knapsacks change during the optimization process. We modify our greedy algorithm to avoid a complete restart at each constraint update. This modification retains the approximation guarantees of the static case. We evaluate our results experimentally on a video summarization and sensor placement task. We show that our proposed algorithm competes with the state-of-the-art in static settings. Furthermore, we show that in dynamic settings with tight computational time budget, our modified greedy yields significant improvements over starting the greedy from scratch, in terms of the solution quality achieved.
The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a $(1-1/e)^2$-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the $(1-1/e)^2$-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most $k$ that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of emph{locally-adaptive} policies we use in the main result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا