The compact directed acyclic word graph (CDAWG) of a string $T$ of length $n$ takes space proportional just to the number $e$ of right extensions of the maximal repeats of $T$, and it is thus an appealing index for highly repetitive datasets, like collections of genomes from similar species, in which $e$ grows significantly more slowly than $n$. We reduce from $O(mlog{log{n}})$ to $O(m)$ the time needed to count the number of occurrences of a pattern of length $m$, using an existing data structure that takes an amount of space proportional to the size of the CDAWG. This implies a reduction from $O(mlog{log{n}}+mathtt{occ})$ to $O(m+mathtt{occ})$ in the time needed to locate all the $mathtt{occ}$ occurrences of the pattern. We also reduce from $O(klog{log{n}})$ to $O(k)$ the time needed to read the $k$ characters of the label of an edge of the suffix tree of $T$, and we reduce from $O(mlog{log{n}})$ to $O(m)$ the time needed to compute the matching statistics between a query of length $m$ and $T$, using an existing representation of the suffix tree based on the CDAWG. All such improvements derive from extracting the label of a vertex or of an arc of the CDAWG using a straight-line program induced by the reversed CDAWG.