No Arabic abstract
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{mu}^{rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, $Pi_{rm EM}^prime(0)$. The idea is based on the observation that, in the relevant kinematic domain, the integration kernel $K(s)$, entering the formula relating $a_{mu}^{rm hvp}$ to $e^{+}e^{-}$ annihilation data, behaves like $1/s$ times a very smooth function of $s$, the squared energy. We find an expression for $a_{mu}$ in terms of $Pi_{rm EM}^prime(0)$, which can be calculated in lattice QCD. Using recent lattice results we find a good approximation for $a_{mu}^{rm hvp}$, but the precision is not yet sufficient to resolve the discrepancy between the $R(s)$ data-based results and the experimentally measured value.
This paper introduces a new approach to measure the muon magnetic moment anomaly $a_{mu} = (g-2)/2$, and the muon electric dipole moment (EDM) $d_{mu}$ at the J-PARC muon facility. The goal of our experiment is to measure $a_{mu}$ and $d_{mu}$ using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon $g-2$ experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1,000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for $a_{mu}$ is statistical uncertainty of 450 part per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of $1.5times 10^{-21}~ecdotmbox{cm}$.
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $mathcal{O}(alpha^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_mu/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $mathcal{O}(alpha^2)$ and is due to hadronic vacuum polarization, whereas at $mathcal{O}(alpha^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_mu^text{SM}=116,591,810(43)times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$sigma$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics.
The anomalous magnetic moment of the muon, a_mu, has been measured with an overall precision of 540 ppb by the E821 experiment at BNL. Since the publication of this result in 2004 there has been a persistent tension of 3.5 standard deviations with the theoretical prediction of a_mu based on the Standard Model. The uncertainty of the latter is dominated by the effects of the strong interaction, notably the hadronic vacuum polarisation (HVP) and the hadronic light-by-light (HLbL) scattering contributions, which are commonly evaluated using a data-driven approach and hadronic models, respectively. Given that the discrepancy between theory and experiment is currently one of the most intriguing hints for a possible failure of the Standard Model, it is of paramount importance to determine both the HVP and HLbL contributions from first principles. In this review we present the status of lattice QCD calculations of the leading-order HVP and the HLbL scattering contributions, a_mu^hvp and a_mu^hlbl. After describing the formalism to express a_mu^hvp and a_mu^hlbl in terms of Euclidean correlation functions that can be computed on the lattice, we focus on the systematic effects that must be controlled to achieve a first-principles determination of the dominant strong interaction contributions to a_mu with the desired level of precision. We also present an overview of current lattice QCD results for a_mu^hvp and a_mu^hlbl, as well as related quantities such as the transition form factor for pi0 -> gamma*gamma*. While the total error of current lattice QCD estimates of a_mu^hvp has reached the few-percent level, it must be further reduced by a factor 5 to be competitive with the data-driven dispersive approach. At the same time, there has been good progress towards the determination of a_mu^hlbl with an uncertainty at the 10-15%-level.
The MUonE experiment aims at a precision measurement of the hadronic vacuum polarization contribution to the muon $g-2$, via elastic muon-electron scattering. Since the current muon $g-2$ anomaly hints at the potential existence of new physics (NP) related to the muon, the question then arises as to whether the measurement of hadronic vacuum polarization in MUonE could be affected by the same NP as well. In this work, we address this question by investigating a variety of NP explanations of the muon $g-2$ anomaly via either vector or scalar mediators with either flavor-universal, non-universal or even flavor-violating couplings to electrons and muons. We derive the corresponding MUonE sensitivity in each case and find that the measurement of hadronic vacuum polarization at the MUonE is not vulnerable to any of these NP scenarios.
The anomalous magnetic moment of the muon is an important observable that tests radiative corrections of all three observed local gauge forces: electromagnetic, weak and strong interactions. High precision measurements reveal some discrepancy with the most accurate theoretical evaluations of the anomalous magnetic moment. We show in this note that the UV finite theory cannot resolve this discrepancy. We believe that more reliable estimate of the nonperturbative hadronic contribution and the new measurements can resolve the problem.