Do you want to publish a course? Click here

Advancement in the understanding of the field and frequency dependent microwave surface resistance of niobium

412   0   0.0 ( 0 )
 Added by Martina Martinello
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been observed in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobium lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.



rate research

Read More

Previous work has demonstrated that the radio frequency surface resistance of niobium resonators is dramatically reduced when nitrogen impurities are dissolved as interstitial in the material. The origin of this effect is attributed to the lowering of the Mattis and Bardeen surface resistance contribution with increasing accelerating field. Meanwhile, an enhancement of the sensitivity to trapped magnetic field is typically observed for such cavities. In this paper we conduct the first systematic study on these different components contributing to the total surface resistance as a function of different levels of dissolved nitrogen, in comparison with standard surface treatments for niobium resonators. Adding these results together we are able to show for the first time which is the optimum surface treatment that maximizes the Q-factor of superconducting niobium resonators as a function of expected trapped magnetic field in the cavity walls. These results also provide new insights on the physics behind the change in the field dependence of the Mattis and Bardeen surface resistance, and of the trapped magnetic vortex induced losses in superconducting niobium resonators.
121 - G. Ciovati , P. Dhakal , 2014
In a recent comment [arXiv:1405.2978v1 (2014)] Romanenko and Grassellino made unsubstantiated statements about our work [Appl. Phys. Lett. 104, 092601 (2014)] and ascribed to us wrong points which we had not made. Here we show that the claims of Romanenko and Grassellino are based on misinterpretation of our Letter and inadequate data analysis in their earlier work [*]. [*] A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)
80 - D. Bafia 2021
Superconducting radio-frequency (SRF) niobium cavities are the modern means of particle acceleration and an enabling technology for record coherence superconducting quantum systems and ultra-sensitive searches for new physics. Here we report a systematic effect observed on a large set of bulk SRF cavities - an anomalous decrease of the resonant frequency at temperatures just below the superconducting transition temperature - which opens up a new means of understanding the physics behind nitrogen doping and other modern cavity surface treatments relevant for future quality factor and coherence improvements. The magnitude of the frequency change correlates systematically with the near-surface impurity distribution in studied cavities and with the observed $T_c$ variation. We also present the first demonstration of the coherence peak in the real part of the AC complex conductivity in Nb SRF cavities and show that its magnitude varies with impurity distribution.
We present measurements of the magnetic field dependent microwave surface resistance in laser-ablated YBa$_2$Cu$_3$O$_{7-delta}$ films on SrTiO$_3$ substrates. BaZrO$_3$ crystallites were included in the films using composite targets containing BaZrO$_3$ inclusions with mean grain size smaller than 1 $mu$m. X-ray diffraction showed single epitaxial relationship between BaZrO$_3$ and YBa$_2$Cu$_3$O$_{7-delta}$. The effective surface resistance was measured at 47.7 GHz for 60$< T <$90 K and 0$< mu_0H <$0.8 T. The magnetic field had a very different effect on pristine YBa$_2$Cu$_3$O$_{7-delta}$ and YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$, while for $mu_0H=$0 only a reduction of $T_c$ in the YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ film was observed, consistent with dc measurements. At low enough $T$, in moderate fields YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ exhibited an intrinsic thin film resistance lower than the pure film. The results clearly indicate that BaZrO$_3$ inclusions determine a strong reduction of the field-dependent surface resistance. From the analysis of the data in the framework of simple models for the microwave surface impedance in the mixed state we argue that BaZrO$_3$ inclusions determine very steep pinning potentials.
The microwave power, dc magnetic field, frequency and temperature dependence of the surface resistance of MgB2 films and powder samples were studied. Sample quality is relatively easy to identify by a number of characteristics, the most clear being the breakdown in the omega squared law for poor quality samples. Analysis of the experimental data suggests the most attractive procedure for high quality film growth for technical applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا