Do you want to publish a course? Click here

Metal enrichment signatures of the first stars on high-z DLAs

50   0   0.0 ( 0 )
 Added by Qingbo Ma
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Ly$alpha$ absorbers (DLAs). The simulations include atomic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3% (40%) of mass (temperature) selected high-$z$ ($zge5.5$) DLAs retain signatures of pollution from PopIII stars, independently from the first star model. Such DLAs have low halo mass ($<10^{9.6},rm M_{odot}$), metallicity ($<10^{-3},rm Z_{odot}$) and star formation rate ($<10^{-1.5},rm M_{odot},yr^{-1}$). { Metal abundance ratios of DLAs imprinted in the spectra of QSO} can be useful tools to infer the properties of the polluting stellar generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at $zge5$, we find that most of these DLAs are consistent within errors with PopII stars dominated enrichment and strongly disfavor the pollution pattern of very massive first stars (i.e. 100~$rm M_{odot}$-500~$rm M_{odot}$). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100]~$rm M_{odot}$. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.

rate research

Read More

We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-alpha absorbers (ESDLAs) initially selected as high N(Hi) (i.e.>=5x10^21 cm-2) candidates from the Sloan Digital Sky Survey (SDSS). We confirm the high Hi column densities which we measure to be in the range log N(Hi) = 21.6-22.4. Molecular hydrogen is detected with high column densities (N(H_2)>=10^18 cm-2) in five out of eleven systems, three of which are reported here for the first time. We compare the chemical properties of this sample of ESDLAs, supplemented with literature measurements, to that of DLAs located at the redshift of long-duration gamma-ray bursts (GRB-DLAs). We confirm that the two populations are almost indistinguishable in terms of chemical enrichment, H_2 column density and gas kinematics. All this suggests that ESDLAs and GRB-DLAs probe similar galactic environments. We search for the galaxy counterparts of ESDLAs and find associated emission lines in three out of eleven systems, two of which are reported here for the first time (towards the quasars SDSS J002503.03+114547.80 and SDSS J114347.21+142021.60, respectively). The measured separations between the quasar sightlines and the emission associated with the ESDLA galaxy are all very small (rho < 3 kpc). While the small impact parameters are similar to what is observed for GRB-DLAs, the associated star-formation rates are on average lower than seen for GRB host galaxies. This is explained by long-duration GRBs being associated with the death of massive stars, hence pinpointing regions of active star formation in the GRB host galaxies. Our observations support the suggestion from the literature that ESDLAs could act as blind analogues of GRB-DLAs, probing high column density neutral gas in the heart of high-redshift galaxies, without any prior on the instantaneous star-formation rate.
We study the mean absorption spectrum of the Damped Lyman alpha population at $zsim 2.6$ by stacking normalized, rest-frame shifted spectra of $sim 27,000$ DLAs from the DR12 of BOSS/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in 5 intervals of DLA hydrogen column density, 5 intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with $N_{rm HI}$, whereas for high-ionization lines the increase is much weaker. The mean metal line equivalent widths decrease by a factor $sim 1.1-1.5$ from $zsim2.1$ to $z sim 3.5$, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to AlIII, SIII, SiIII, CIV, SiIV, NV and OVI. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species NI, ZnII, CII${}^{*}$, FeIII, and SIV. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.
366 - Ke-Jung Chen 2016
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.
Planetary engulfment events have long been proposed as a lithium (Li) enrichment mechanism contributing to the population of Li-rich giants $(A(mathrm{Li}) geq 1.5$ dex). Using $GALAH$ survey data and MESA stellar models, we calculate the strength and duration of the Li enrichment signature produced in the convective envelope of a host star that has engulfed a hot Jupiter (HJ) companion. We consider solar-metallicity stars in the mass range of $1.0-2.0~mathrm{M_{odot}}$ and the Li supplied by a HJ of $1.0~mathrm{M_{J}}$. We explore engulfment events that occur near the main sequence turn-off (MSTO) and out to orbital separations of $R_{star}{sim}~0.1~mathrm{AU}= 22~mathrm{R_{odot}}$. We map our results onto the Hertzsprung-Russell (H-R) Diagram, revealing the parameter space where planetary engulfment events produce significant Li enrichment signatures. We also map the associated survival times of these signatures, which range across 9 orders of magnitude. Our calculations indicate that if the HJ engulfment event occurs near the MSTO or on the subgiant branch, Li enrichment can be measured at a $5sigma$ confidence level and with strengths that exceed meteoritic abundance measurements. Moreover, for stars of $1.4~mathrm{M_{odot}}$, these signatures are predicted to survive for up to 1 Gyr. We determine that Li enrichment beyond the subgiant branch must be produced by other mechanisms, such as the Cameron-Fowler process or accretion of material from an AGB companion.
We test the galactic outflow model by probing associated galaxies of four strong intergalactic CIV absorbers at $z=5$--6 using the Hubble Space Telescope (HST) ACS ramp narrowband filters. The four strong CIV absorbers reside at $z=5.74$, $5.52$, $4.95$, and $4.87$, with column densities ranging from $N_{rm{CIV}}=10^{13.8}$ cm$^{-2}$ to $10^{14.8}$ cm$^{-2}$. At $z=5.74$, we detect an i-dropout Ly$alpha$ emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the CIV absorber. This LAE candidate has a Ly$alpha$-based star formation rate (SFR$_{rm{Lyalpha}}$) of 2 $M_odot$ yr$^{-1}$ and a UV-based SFR of 4 $M_odot$ yr$^{-1}$. Although we cannot completely rule out that this $i$-dropout emitter may be an [OII] interloper, its measured properties are consistent with the CIV powering galaxy at $z=5.74$. For CIV absorbers at $z=4.95$ and $z=4.87$, although we detect two LAE candidates with impact parameters of 160 kpc and 200 kpc, such distances are larger than that predicted from the simulations. Therefore we treat them as non-detections. For the system at $z=5.52$, we do not detect LAE candidates, placing a 3-$sigma$ upper limit of SFR$_{rm{Lyalpha}}approx 1.5 M_odot$ yr$^{-1}$. In summary, in these four cases, we only detect one plausible CIV source at $z=5.74$. Combining the modest SFR of the one detection and the three non-detections, our HST observations strongly support that smaller galaxies (SFR$_{rm{Lyalpha}} lesssim 2 M_odot$ yr$^{-1}$) are main sources of intergalactic CIV absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at $zgtrsim5$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا