Do you want to publish a course? Click here

On the number of generators of powers of an ideal

182   0   0.0 ( 0 )
 Added by Juergen Herzog
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study the number of generators of ideals in regular rings and ask the question whether $mu(I)<mu(I^2)$ if $I$ is not a principal ideal, where $mu(J)$ denotes the number of generators of an ideal $J$. We provide lower bounds for the number of generators for the powers of an ideal and also show that the CM-type of $I^2$ is $geq 3$ if $I$ is a monomial ideal of height $n$ in $K[x_1,ldots,x_n]$ and $ngeq 3$.



rate research

Read More

Given a number $q$, we construct a monomial ideal $I$ with the property that the function which describes the number of generators of $I^k$ has at least $q$ local maxima.
Let $G$ be a simple graph and $I$ its edge ideal. We prove that $${rm reg}(I^{(s)}) = {rm reg}(I^s)$$ for $s = 2,3$, where $I^{(s)}$ is the $s$-th symbolic power of $I$. As a consequence, we prove the following bounds begin{align*} {rm reg} I^{s} & le {rm reg} I + 2s - 2, text{ for } s = 2,3, {rm reg} I^{(s)} & le {rm reg} I + 2s - 2,text{ for } s = 2,3,4. end{align*}
We begin the study of the notion of diameter of an ideal I of a polynomial ring S over a field, an invariant measuring the distance between the minimal primes of I. We provide large classes of Hirsch ideals, i.e. ideals with diameter not larger than the codimension, such as: quadratic radical ideals of codimension at most 4 and such that S/I is Gorenstein, or ideals admitting a square-free complete intersection initial ideal.
This paper studies the numbers of minimal generators of powers of monomial ideals in polynomial rings. For a monomial ideal $I$ in two variables, Eliahou, Herzog, and Saem gave a sharp lower bound $mu (I^2)ge 9$ for the number of minimal generators of $I^2$ with $mu(I)geq 6$. Recently, Gasanova constructed monomial ideals such that $mu(I)>mu(I^n)$ for any positive integer $n$. In reference to them, we construct a certain class of monomial ideals such that $mu(I)>mu(I^2)>cdots >mu(I^n)=(n+1)^2$ for any positive integer $n$, which provides one of the most unexpected behaviors of the function $mu(I^k)$. The monomial ideals also give a peculiar example such that the Cohen-Macaulay type (or the index of irreducibility) of $R/I^n$ descends.
Let $A={{bf a}_1,...,{bf a}_m} subset mathbb{Z}^n$ be a vector configuration and $I_A subset K[x_1,...,x_m]$ its corresponding toric ideal. The paper consists of two parts. In the first part we completely determine the number of different minimal systems of binomial generators of $I_A$. We also prove that generic toric ideals are generated by indispensable binomials. In the second part we associate to $A$ a simplicial complex $Delta _{ind(A)}$. We show that the vertices of $Delta_{ind(A)}$ correspond to the indispensable monomials of the toric ideal $I_A$, while one dimensional facets of $Delta_{ind(A)}$ with minimal binomial $A$-degree correspond to the indispensable binomials of $I_{A}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا