Do you want to publish a course? Click here

Hipsters on Networks: How a Small Group of Individuals Can Lead to an Anti-Establishment Majority

142   0   0.0 ( 0 )
 Added by Mason A. Porter
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The spread of opinions, memes, diseases, and alternative facts in a population depends both on the details of the spreading process and on the structure of the social and communication networks on which they spread. In this paper, we explore how textit{anti-establishment} nodes (e.g., textit{hipsters}) influence the spreading dynamics of two competing products. We consider a model in which spreading follows a deterministic rule for updating node states (which describe which product has been adopted) in which an adjustable fraction $p_{rm Hip}$ of the nodes in a network are hipsters, who choose to adopt the product that they believe is the less popular of the two. The remaining nodes are conformists, who choose which product to adopt by considering which products their immediate neighbors have adopted. We simulate our model on both synthetic and real networks, and we show that the hipsters have a major effect on the final fraction of people who adopt each product: even when only one of the two products exists at the beginning of the simulations, a very small fraction of hipsters in a network can still cause the other product to eventually become the more popular one. To account for this behavior, we construct an approximation for the steady-state adoption fraction on $k$-regular trees in the limit of few hipsters. Additionally, our simulations demonstrate that a time delay $tau$ in the knowledge of the product distribution in a population, as compared to immediate knowledge of product adoption among nearest neighbors, can have a large effect on the final distribution of product adoptions. Our simple model and analysis may help shed light on the road to success for anti-establishment choices in elections, as such success can arise rather generically in our model from a small number of anti-establishment individuals and ordinary processes of social influence on normal individuals.



rate research

Read More

244 - F. W. S. Lima 2013
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira $1992$ on opinion-dependent network or Stauffer-Hohnisch-Pittnauer networks. By Monte Carlo simulations and finite-size scaling relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.230(3)$, $gamma/ u=0.535(2)$, and $1/ u=0.475(8)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.166(3)$ and $U^*=0.288(3)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=1$ and the results presented here demonstrate that the majority-vote model belongs to a different universality class than the equilibrium Ising model on Stauffer-Hohnisch-Pittnauer networks, but to the same class as majority-vote models on some other networks.
144 - Saptarshi Sinha , Deep Nath , 2020
The maintenance of cooperation in the presence of spatial restrictions has been studied extensively. It is well-established that the underlying graph topology can significantly influence the outcome of games on graphs. Maintenance of cooperation could be difficult, especially in the absence of spatial restrictions. The evolution of cooperation would naturally depend on payoffs. However, payoffs are generally considered to be invariant in a given game. A natural yet unexplored question is whether the topology of the underlying structures on which the games are played, possesses no role whatsoever in the determination of payoffs. Herein, we introduce the notion of cooperator graphs and defector graphs as well as a new form of game payoff, which is weakly dependent on the underlying network topology. These concepts are inspired by the well-known microbial phenomenon of quorum sensing. We demonstrate that even with such a weak dependence, the fundamental game dynamics and indeed the very nature of the game may be altered. Such changes in the nature of a game have been well-reported in theoretical and experimental studies.
Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on peoples susceptibility. Despite that the community structure can reduce the infected population given same infection rates, it will not deterministically affect nodes susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.
Standard epidemiological models for COVID-19 employ variants of compartment (SIR) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 U.S cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstrate the potential for spatial network structure to generate highly non-uniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform healthcare planning, predict community outcomes, or identify potential disparities.
The study of motifs in networks can help researchers uncover links between the structure and function of networks in biology, sociology, economics, and many other areas. Empirical studies of networks have identified feedback loops, feedforward loops, and several other small structures as motifs that occur frequently in real-world networks and may contribute by various mechanisms to important functions in these systems. However, these mechanisms are unknown for many of these motifs. We propose to distinguish between structure motifs (i.e., graphlets) in networks and process motifs (which we define as structured sets of walks) on networks and consider process motifs as building blocks of processes on networks. Using the steady-state covariances and steady-state correlations in a multivariate Ornstein--Uhlenbeck process on a network as examples, we demonstrate that the distinction between structure motifs and process motifs makes it possible to gain quantitative insights into mechanisms that contribute to important functions of dynamical systems on networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا