Do you want to publish a course? Click here

A Large-scale Plume in an X-Class Solar Flare

113   0   0.0 ( 0 )
 Added by Gregory Fleishman
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open field. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding the energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is further important as the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes are often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report detection of a large-scale `plume at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line-of-sight SOHO/MDI magnetograms with our modeling tool GX Simulator. We found that a significant fraction of the nonthermal electrons accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open field. We propose that the proportion between the closed and open field at the plume is what determines the SEP population escaping into interplanetary space.



rate research

Read More

Solar flares often display pulsating and oscillatory signatures in the emission, known as quasi-periodic pulsations (QPP). QPP are typically identified during the impulsive phase of flares, yet in some cases, their presence is detected late into the decay phase. Here, we report extensive fine structure QPP that are detected throughout the large X8.2 flare from 2017 September 10. Following the analysis of the thermal pulsations observed in the GOES/XRS and the 131 A channel of SDO/AIA, we find a pulsation period of ~65 s during the impulsive phase followed by lower amplitude QPP with a period of ~150 s in the decay phase, up to three hours after the peak of the flare. We find that during the time of the impulsive QPP, the soft X-ray source observed with RHESSI rapidly rises at a velocity of approximately 17 km/s following the plasmoid/coronal mass ejection (CME) eruption. We interpret these QPP in terms of a manifestation of the reconnection dynamics in the eruptive event. During the long-duration decay phase lasting several hours, extended downward contractions of collapsing loops/plasmoids that reach the top of the flare arcade are observed in EUV. We note that the existence of persistent QPP into the decay phase of this flare are most likely related to these features. The QPP during this phase are discussed in terms of MHD wave modes triggered in the post-flaring loops.
71 - Ruisheng Zheng , Yao Chen , 2016
With the observations of the Solar Dynamics Observatory, we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and there appeared three FRs. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edge, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection between the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in 3D standard model for eruptive flares. We suggest that complex structures of the flare is likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper limit of the flux is also provided at 405 GHz) and X-ray. Although the observations of radio emission up to 212 GHz indicates that relativistic electrons with energies of a few MeV were accelerated, no significant hard X-ray emission was detected by RHESSI above ~ 250 keV. Images at 12--20 and 50--100 keV reveal a very compact, but resolved, source of about ~ 10 x 10. EUV TRACE images show a multi-kernel structure suggesting a complex (multipolar) magnetic topology. During the peak time the radio spectrum shows an extended flatness from ~ 7 to 35 GHz. Modeling the optically thin part of the radio spectrum as gyrosynchrotron emission we obtained the electron spectrum (spectral index delta, instantaneous number of emitting electrons). It is shown that in order to keep the expected X-ray emission from the same emitting electrons below the RHESSI background at 250 keV, a magnetic field above 500 G is necessary. On the other hand, the electron spectrum deduced from radio observations >= 50 GHz is harder than that deduced from ~ 70 - 250 keV X-ray data, meaning that there must exist a breaking energy around a few hundred keV. During the decay of the impulsive phase, a hardening of the X-ray spectrum is observed which is interpreted as a hardening of the electron distribution spectrum produced by the diffusion due to Coulomb collisions of the trapped electrons in a medium with an electron density of n_e ~ 3E10 - 5E10 cm-3.
We present SDO/AIA observations of an eruptive X-class flare of July 12, 2012, and compare its evolution with the predictions of a 3D numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the AIA 131A observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km/s along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A DEM analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a CME observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the standard solar flare model in 3D. This model matches the observations well, reproducing both the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.
Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X2.2 flare in NOAA 12673 on 2017 September 6. It exhibits two episodes of flare brightening with rather complex, atypical ribbons. Based on topology analysis of extrapolated coronal magnetic field, we revealed that there is a two-step magnetic reconnection process during the flare. Prior to the flare, there is a magnetic flux rope (MFR) with one leg rooted in a rotating sunspot. Neighboring to the leg is a magnetic null-point structure. The sunspot drives the MFR to expand, pushing magnetic flux to the null point, and reconnection is first triggered there. The disturbance from the null-point reconnection triggers the second reconnection, i.e., a tether-cutting reconnection below the rope. However, these two reconnections failed to produce an eruption, because the rope is firmly held by its strapping flux. Furthermore, we compared this flare with an eruptive X9.3 flare in the same region with 2 hours later, which has a similar MFR configuration. The key difference between them is that, for the confined flare, the MFR is fully below the threshold of torus instability, while for the eruptive one, the MFR reaches entirely above the threshold. This study provides a good evidence supporting that reconnection alone may not be able to trigger eruption, rather, MHD instability plays a more important role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا