No Arabic abstract
Flavor symmetries are useful to realize fermion flavor structures in the standard model. In particular, discrete $A_4$ symmetry is used to realize lepton flavor structures, and some scalars which are called flavon are introduced to break this symmetry. In many models, flavons are assumed to be much heavier than the electroweak scale. However, our previous work showed that flavon mass around 100 GeV is allowed by experimental constraints in the $A_4$ symmetric model with residual $Z_3$ symmetry. In this paper, we discuss collider search of such a light flavon $varphi_T$. We find that an electron - photon collision, as a considerable option at the international linear collider, has advantages to search for the signals. At the electron - photon collider flavons are produced as $e^-gamma to l^- varphi_T$ and decay into two charged leptons. Then we analyze signals of flavor-conserving final-state $tau^+ tau^- e^-$, and flavor-violating final-states $tau^+ mu^- mu^-$ and $mu^+ tau^- tau^-$ by carrying out numerical simulation. For the former final-state, SM background can be strongly suppressed by imposing cuts on the invariant masses of final-state leptons. For the later final-states, SM background is extremely small, because in the SM there are no such flavor-violating final-states. We then find that sufficient discovery significance can be obtained, even if flavons are heavier than the lower limits from flavor physics.
Precision studies at electron-positron colliders with center-of-mass energies in the charm-tau region and below have strongly contributed to our understanding of light-meson interactions at low energies. We focus on the processes involving two or three light mesons with invariant masses below nucleon-antinucleon threshold. A prominent role is given to the interactions of the nine lightest pseudoscalar mesons (pions, kaons, $eta$, and $eta$) and the two narrow neutral isoscalar vector mesons $omega$ and $phi$. Experimental methods used to produce the mesons are reviewed as well as theory tools to extract properties of the meson-meson interactions. Examples of recent results from the DA$Phi$NE, BEPCII, and VEPP-2000 colliders are presented. In the outlook we briefly discuss prospects for further studies at future super-charm-tau factories.
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibility for how new electroweak-scale particles could have evaded detection so far is if they carry only electroweak charge, i.e. are color neutral. Future $e^+e^-$ colliders are prime tools to study such new physics. Here, we investigate the sensitivity of $e^+e^-$ colliders to scalar partners of the charged leptons, known as sleptons in supersymmetric extensions of the Standard Model. In order to allow such scalar lepton partners to decay, we consider models with an additional neutral fermion, which in supersymmetric models corresponds to a neutralino. We demonstrate that future $e^+e^-$ colliders would be able to probe most of the kinematically accessible parameter space, i.e. where the mass of the scalar lepton partner is less than half of the colliders center-of-mass energy, with only a few days of data. Besides constraining more general models, this would allow to probe some well motivated dark matter scenarios in the Minimal Supersymmetric Standard Model, in particular the incredible bulk and stau co-annihilation scenarios.
Calibration of the absolute energy scale at high-energy photon (gamma-gamma, gamma-electron) colliders is discussed. The luminosity spectrum at photon colliders is broad and has a rather sharp high-energy edge, which can be used, for example, to measure the mass of the Higgs boson in the process gamma-gamma to H or masses of charged scalars by observing the cross-section threshold. In addition to the precise knowledge of the edge energy of the luminosity spectrum, it is even more important to have a way to calibrate the absolute energy scale of the detector. At first sight, Compton scattering itself provides a unique way to determine the beam energies and produce particles of known energies that could be used for detector calibration. The energy scale is given by the electron mass m_e and laser photon energy omega_0. However, this does not work at realistic photon colliders due to large nonlinear effects in Compton scattering at the conversion region (xi^2 sim 0.3). It is argued that the process gamma-electron to eZ_0 provides the best way to calibrate the energy scale of the detector, where the energy scale is given by m_Z.
In this paper we analyse the double vector meson production in photon -- hadron ($gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for the $rhorho$, $J/Psi J/Psi$ and $rho J/Psi$ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in $gamma gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $rhorho$ and $J/Psi J/Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $rho J/Psi$ production at LHC can be useful to constrain the double scattering mechanism.
Motivated by the ATLAS and CMS announcements of the excesses of di-photon events, we discuss the production and decay processes of di-photon resonance at future $e^+e^-$ colliders. We assume that the excess of the di-photon events at the LHC is explained by a scalar resonance decaying into a pair of photons. In such a case, the scalar interacts with standard model gauge bosons and, consequently, the production of such a scalar is possible at the $e^+e^-$ colliders. We study the production of the scalar resonance via the associated production with photon or $Z$, as well as via the vector-boson fusion, and calculate the cross sections of these processes. We also study the backgrounds, and discuss the detectability of the signals of scalar production with various decay processes of the scalar resonance. We also consider the case where the scalar resonance has an invisible decay mode, and study how the invisible decay can be observed at the $e^+e^-$ colliders.