Berry phase theory of planar Hall effect in Topological Insulators


Abstract in English

Negative longitudinal magnetoresistance, in the presence of an external magnetic field parallel to the direction of an applied current, has recently been experimentally verified in Weyl semimetals and topological insulators in the bulk conduction limit. The appearance of negative longitudinal magnetoresistance in topological semimetals is understood as an effect of chiral anomaly, whereas it is not well-defined in topological insulators. Another intriguing phenomenon, planar Hall effect - appearance of a transverse voltage in the plane of applied co-planar electric and magnetic fields not perfectly aligned to each other, a configuration in which the conventional Hall effect vanishes, has recently been suggested to exist in Weyl semimetals. In this paper we present a quasi-classical theory of planar Hall effect of a three-dimensional topological insulator in the bulk conduction limit. Starting from Boltzmann transport equations we derive the expressions for planar Hall conductivity and longitudinal magnetoconductivity in topological insulators and show the important roles played by the orbital magnetic moment for the appearance of planar Hall effect. Our theoretical results predict specific experimental signatures for topological insulators that can be directly checked in experiments.

Download