Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate-of-decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.