No Arabic abstract
Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short burst of electromagnetic energy propagating in free-space at the speed of light. They are distinguished from transverse waves by a donut-like configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we report that such Flying Donuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate Flying Donuts is of fundamental interest, as they shall interact with matter in unique ways, including non-trivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, thus offering new opportunities for telecommunications, sensing, and spectroscopy.
We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. The 3D void space is realized by constructing all-dielectric 3D photonic crystals such that the effective permittivity and permeability vanish simultaneously, forming a six-fold Dirac-like point with Dirac-like linear dispersions at the center of the Brillouin Zone. We demonstrate, both theoretically and experimentally, that such a 3D void space exhibits unique properties and rich functionalities absent in any other electromagnetic media, such as boundary-control transmission switching and 3D perfect wave-steering mechanisms. Especially, contrary to the photonic doping effect in its two-dimensional counterpart, the 3D void space exhibits an amazing property of impurity-immunity. Our work paves a road towards the realization of 3D void space where electromagnetic waves can be manipulated in unprecedented ways.
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on elucidating the physical grounds for these new aspects. It is shown that, in many practically important cases, the scattering of light by such particles, despite their smallness, may have almost nothing in common with the Rayleigh one. The so-called, anomalous scattering and absorption, as well as Fano resonances, including unconventional (associated with the excitation of longitudinal electromagnetic oscillations) and directional Fano resonances, observed only in a small solid angle, are discussed in detail. The review contains a Mathematical Supplement, which includes a summary of the main results of the Mie theory and a discussion of some general properties of the scattering coefficients. In addition to purely academic interest, the phenomena considered in this review can find wide applications in biology, medicine, pharmacology, genetic engineering, imaging of ultra-small objects, ultra-high-resolution spectroscopy, information transmission, recording, and processing, and many other applications and technologies. The reported study was funded by RFBR, project number 19-11-00001 and the project of the Russian Science Foundation No. 19-72-30012, within the framework of which all the original calculations given in this publication were performed.
Metasurfaces have shown unprecedented possibilities for wavefront manipulation of waves. The research efforts have been focused on the development of metasurfaces that perform a specific functionality for waves of one physical nature, for example, for electromagnetic waves. In this work, we propose the use of power-flow conformal metamirrors for creation of multiphysics devices which can simultaneously control waves of different nature. In particular, we introduce metasurface devices which perform specified operations on both electromagnetic and acoustic waves at the same time. Using a purely analytical model based on surface impedances, we introduce metasurfaces that perform the same functionality for electromagnetic and acoustic waves and, even more challenging, different functionalities for electromagnetics and acoustics. We provide realistic topologies for practical implementations of proposed metasurfaces and confirm the results with numerical simulations.
Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this figure of merit and an optimization algorithm, we identified optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap.
Thin film optical elements exhibiting translational invariance, and thus robustness to optical misalignment, are crucial for rapid development of compact and integrated optical devices. In this letter, we experimentally demonstrate a beam-shaping element that generates an annular beam by spatially filtering the fundamental Gaussian mode of a laser beam. The element comprises of a one-dimensional photonic crystal cavity fabricated using sputtered thin films. The planar architecture and in-plane symmetry of the element render our beam-shaping technique translationally invariant. The generated annular beam is sensitive to the polarization direction and the wavelength of the incident laser beam. Using this property of the annular beam, we show simultaneous generation of concentric annular beams of different wavelengths. Our experimental observations show an excellent agreement with simulation results performed using finite-difference time-domain method. Such a beam-shaping element has applications in areas ranging from microscopy and medicine to semiconductor lithography and manufacturing in microelectronics industry.