No Arabic abstract
Strongly Coupled Dark Energy plus Warm dark matter (SCDEW) cosmologies admit the stationary presence of $sim 1, %$ of coupled-DM and DE, since inflationary reheating. Coupled-DM fluctuations therefore grow up to non-linearity even in the early radiative expansion. Such early non-linear stages are modelized here through the evolution of a top-hat density enhancement, reaching an early virial balance when the coupled-DM density contrast is just 25-26 and DM density enhancement is $ sim 10, %$ of total density. During the time needed to settle in virial equilibium, the virial balance conditions however continue to modify, so that virialized lumps undergo a complete evaporation. Here we outline that DM particles processed by overdentities preserve a fraction of their virial momentum. Although fully non-relativistic, the resulting velocities (moderately) affect the fluctuation dynamics over greater scales, entering the horizon later on.
Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.
Large primordial Black Hole (PBH) formation is enhanced if strongly coupled scalar and spinor fields ($Phi$ and $psi$) are a stable cosmic component since the primeval radiative expansion (SCDEW models). In particular, we show that PBH formation is easier at a specific time, i.e., when the asymptotic mass $m_H$, acquired by the $psi$ field at the higgs scale, becomes dominant, so that the typical BH mass $M_{BH}$ depends on $m_H$ value. For instance, if $m_H sim 100,$ eV $(1$ keV$)$ and the coupling $beta sim 8.35 (37)$, PBH with $M_{BH} simeq 10^7-10^8 $ $(10^3-10^4), M_odot$ could form. The very mechanism enhancing PBH formation also causes technical difficulties to evaluate the transfer function of SCDEW models at high $k$. A tentative solution of this problem leaves only minor discrepancies from $Lambda$CDM, also at these scales, gradually vanishing for greater $m_H$ values. We conclude that, for suitable parameter choices, SCDEW models could be the real physics underlying $Lambda$ CDM, so overcoming its fine tuning and coincidence problems, with the extra bonus of yielding large BH seeds.
Halos and galaxies are tracers of the underlying dark matter structures. While their bias is well understood in the case of a simple Universe composed dominantly of dark matter, the relation becomes more complex in the presence of massive neutrinos. Indeed massive neutrinos introduce rich dynamics in the process of structure formation leading to scale-dependent bias. We study this process from the perspective of general relativity employing a simple spherical collapse model. We find a characteristic signature at the neutrino free-streaming scale in addition to a large-scale feature from general relativity. The scale-dependent halo bias opposes the suppression in the matter distribution due to neutrino free-streaming and leads to corrections of a few percent in the halo power spectrum. It is not only sensitive to the sum of the neutrino-masses, but respond to the individual masses. Accurate models for the neutrino bias are a crucial ingredient for the future data analysis and play an important role in constraining the neutrino masses.
Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent $N$-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between $sigma_8$ and $Omega_{ u}$ is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.
In this first paper we discuss the linear theory and the background evolution of a new class of models we dub SCDEW: Strongly Coupled DE, plus WDM. In these models, WDM dominates todays matter density; like baryons, WDM is uncoupled. Dark Energy is a scalar field $Phi$; its coupling to ancillary CDM, whose todays density is $ll 1, %$, is an essential model feature. Such coupling, in fact, allows the formation of cosmic structures, in spite of very low WDM particle masses ($sim 100$ eV). SCDEW models yields Cosmic Microwave Background and linear Large Scale features substantially undistinguishable from $Lambda$CDM, but thanks to the very low WDM masses they strongly alleviate $Lambda$CDM issues on small scales, as confirmed via numerical simulations in the II associated paper. Moreover SCDEW cosmologies significantly ease the coincidence and fine tuning problems of $Lambda$CDM and, by using a field theory approach, we also outline possible links with inflationary models. We also discuss a possible fading of the coupling at low redshifts which prevents non linearities on the CDM component to cause computational problems. The (possible) low-$z$ coupling suppression, its mechanism, and its consequences are however still open questions -not necessarily problems- for SCDEW models. The coupling intensity and the WDM particle mass, although being extra parameters in respect to $Lambda$CDM, are found to be substantially constrained a priori so that, if SCDEW is the underlying cosmology, we expect most data to fit also $Lambda$CDM predictions.