Do you want to publish a course? Click here

Was Doggerland catastrophically flooded by the Mesolithic Storegga tsunami?

109   0   0.0 ( 0 )
 Added by Jon Hill
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Myths and legends across the world contain many stories of deluges and floods. Some of these have been attributed to tsunami events. Doggerland in the southern North Sea is a submerged landscape thought to have been heavily affected by a tsunami such that it was abandoned by Mesolithic human populations at the time of the event. The tsunami was generated by the Storegga submarine landslide off the Norwegian coast which failed around 8150 years ago. At this time there were also rapid changes in sea level associated with deglaciation of the Laurentide ice sheet and drainage of its large proglacial lakes, with the largest sea level jumps occurring just prior to the Storegga event. The tsunami affected a large area of the North Atlantic leaving sedimentary deposits across the region, from Greenland, through the Faroes, the UK, Norway and Denmark. From these sediments, run-up heights of up to 20 metres have been estimated in the Shetland Isles and several metres on mainland Scotland. However, sediments are not preserved everywhere and so reconstructing how the tsunami propagated across the North Atlantic before inundating the landscape must be performed using numerical models. These models can also be used to recreate the tsunami interactions with now submerged landscapes, such as Doggerland. Here, the Storegga submarine slide is simulated, generating a tsunami which is then propagated across the North Atlantic and used to reconstruct the inundation on the Shetlands, Moray Firth and Doggerland. The uncertainty in reconstructing palaeobathymetry and the Storegga slide itself results in lower inundation levels than the sediment deposits suggest. Despite these uncertainties, these results suggest Doggerland was not as severely affected as previous studies implied. It is suggested therefore that the abandonment of Doggerland was primarily caused by rapid sea level rise prior to the tsunami event.



rate research

Read More

195 - Denys Dutykh 2020
In the vast literature on tsunami research, few articles have been devoted to energy issues. A theoretical investigation on the energy of waves generated by bottom motion is performed here. We start with the full incompressible Euler equations in the presence of a free surface and derive both dispersive and non-dispersive shallow-water equations with an energy equation. It is shown that dispersive effects only appear at higher order in the energy budget. Then we solve the Cauchy-Poisson problem of tsunami generation for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed.
The purpose of this article is numerical verification of the thory of weak turbulence. We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates pretty good applicability of the weak turbulent approach.
The problem of tsunami wave run-up on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. We present an analysis of the run-up characteristics for various shapes of the incoming symmetrical solitary tsunami waves. It will be demonstrated that the extreme (maximal) wave characteristics on a beach (run-up and draw-down heights, run-up and draw-down velocities and breaking parameter) are weakly dependent on the shape of incident wave if the definition of the significant wave length determined on the 2/3 level of the maximum height is used. The universal analytical expressions for the extreme wave characteristics are derived for the run-up of the solitary pulses. They can be directly applicable for tsunami warning because in many case the shape of the incident tsunami wave is unknown.
It has been recently claimed (Zolotova and Ponyavin, Solar Phys., 291, 2869, 2016, ZP16 henceforth) that a mid-latitude optical phenomenon, which took place over the city of Astrakhan in July 1670, according to Russian chronicles, was a strong aurora borealis. If this was true, it would imply a very strong or even severe geomagnetic storm during the quietest part of the Maunder minimum. However, as we argue in this article, this conclusion is erroneous and caused by a misinterpretation of the chronicle record. As a result of a thorough analysis of the chronicle text, we show that the described phenomenon occurred during the daylight period of the day (the last morning hour), in the south direction (towards noon), and its description does not match that of an aurora. The date of the event was also incorrectly interpreted. We conclude that this phenomenon was not a mid-latitude aurora but an atmospheric phenomenon, the so-called sundog (or parhelion) which is a particular type of solar halo. Accordingly, the claim about a strong mid-latitude aurora during the deep Maunder minimum is not correct and should be dismissed.
275 - Denys Dutykh 2009
The present article is devoted to the influence of sediment layers on the process of tsunami generation. The main scope here is to demonstrate and especially quantify the effect of sedimentation on vertical displacements of the seabed due to an underwater earthquake. The fault is modelled as a Volterra-type dislocation in an elastic half-space. The elastodynamics equations are integrated with a finite element method. A comparison between two cases is performed. The first one corresponds to the classical situation of an elastic homogeneous and isotropic half-space, which is traditionally used for the generation of tsunamis. The second test case takes into account the presence of a sediment layer separating the oceanic column from the hard rock. Some important differences are revealed. We conjecture that deformations in the generation region may be amplified by sedimentary deposits, at least for some parameter values. The mechanism of amplification is studied through careful numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا