Do you want to publish a course? Click here

Gutzwiller variational approach to the two-impurity Anderson model at particle-hole symmetry

131   0   0.0 ( 0 )
 Added by Florian Gebhard
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Gutzwiller-correlated wave functions as variational ground states for the two-impurity Anderson model (TIAM) at particle-hole symmetry as a function of the impurity separation ${bf R}$. Our variational state is obtained by applying the Gutzwiller many-particle correlator to a single-particle product state. We determine the optimal single-particle product state fully variationally from an effective non-interacting TIAM that contains a direct electron transfer between the impurities as variational degree of freedom. For a large Hubbard interaction $U$ between the electrons on the impurities, the impurity spins experience a Heisenberg coupling proportional to $V^2/U$ where $V$ parameterizes the strength of the on-site hybridization. For small Hubbard interactions we observe weakly coupled impurities. In general, for a three-dimensional simple cubic lattice we find discontinuous quantum phase transitions that separate weakly interacting impurities for small interactions from singlet pairs for large interactions.



rate research

Read More

We study the non-interacting two-impurity Anderson model on a lattice using the Green function equation-of-motion method. A case of particular interest is the RKKY limit that is characterized by a small hybridization between impurities and host electrons and the absence of a direct coupling between the impurities. In contrast to the low-density case, at half band-filling and particle-hole symmetry, the RKKY interaction decays as the inverse square of the impurity distance along the axis of a simple cubic lattice. In the RKKY limit, for the spectral function we generically observe a small splitting of the single-impurity resonance into two peaks. For a vanishing density-density correlation function of the host electrons, we find only a broadened single peak in the local density of states.
A fast impurity solver for the dynamical mean field theory(DMFT) named Two Mode Approxi- mation (TMA) is proposed based on the Gutzwiller variational approach, which captures the main features of both the coherent and incoherent motion of the electrons. The new solver works with real frequency at zero temperature and it provides directly the spectral function of the electrons. It can be easily generalized to multi-orbital impurity problems with general on-site interactions, which makes it very useful in LDA+DMFT. Benchmarks on one and two band Hubbard models are presented, and the results agree well with those of Exact Diagonalization (ED).
We study the particle-hole asymmetry of the scattering rate in strongly correlated electron systems by examining the cubic $omega^3$ and $omega T^2$ terms in the imaginary part of the self-energy of the Anderson impurity model. We show that the sign is opposite in the weak-coupling and strong-coupling limits, explaining the differences found in theoretical approaches taking the respective limits as the starting points. The sign change in fact precisely delineates the cross-over between the weak and strong correlation regimes of the model. For weak interaction $U$ the sign reversal occurs for small values of the doping $delta=1-n$, while for interaction of order $U approx 2 Gamma$, $Gamma$ being the hybridization strength, the cross-over curve rapidly shifts to the large-doping range. This curve based on the impurity dynamics is genuinely different from other cross-over curves defined through impurity thermodynamic and static properties.
Partially-projected Gutzwiller variational wavefunctions are used to describe the ground state of disordered interacting systems of fermions. We compare several different variational ground states with the exact ground state for disordered one-dimensional chains, with the goal of determining a minimal set of variational parameters required to accurately describe the spatially-inhomogeneous charge densities and spin correlations. We find that, for weak and intermediate disorder, it is sufficient to include spatial variations of the charge densities in the product state alone, provided that screening of the disorder potential is accounted for. For strong disorder, this prescription is insufficient and it is necessary to include spatially inhomogeneous variational parameters as well.
We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا