Do you want to publish a course? Click here

Attosecond angular streaking and tunnelling time in atomic hydrogen

65   0   0.0 ( 0 )
 Added by U Satya Sainadh
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tunnelling, one of the key features of quantum mechanics, ignited an ongoing debate about the value, meaning and interpretation of tunnelling time. Until recently the debate was purely theoretical, with the process considered to be instantaneous for all practical purposes. This changed with the development of ultrafast lasers and in particular, the attoclock technique that is used to probe the attosecond dynamics of electrons. Although the initial attoclock measurements hinted at instantaneous tunnelling, later experiments contradicted those findings, claiming to have measured finite tunnelling times. In each case these measurements were performed with multi-electron atoms. Atomic hydrogen (H), the simplest atomic system with a single electron, can be exactly (subject only to numerical limitations) modelled using numerical solutions of the 3D-TDSE with measured experimental parameters and acts as a convenient benchmark for both accurate experimental measurements and calculations. Here we report the first attoclock experiment performed on H and find that our experimentally determined offset angles are in excellent agreement with accurate 3D-TDSE simulations performed using our experimental pulse parameters. The same simulations with a short-range Yukawa potential result in zero offset angles for all intensities. We conclude that the offset angle measured in the attoclock experiments originates entirely from electron scattering by the long-range Coulomb potential with no contribution from tunnelling time delay. That conclusion is supported by empirical observation that the electron offset angles follow closely the simple formula for the deflection angle of electrons undergoing classical Rutherford scattering by the Coulomb potential. Thus we confirm that, in H, tunnelling is instantaneous (with an upperbound of 1.8 as) within our experimental and numerical uncertainty.



rate research

Read More

A new theoretical approach to the description of the attosecond streaking measurements of atomic photoionization is presented. It is a fully quantum mechanical description based on numerical solving of the time-dependent Schroedinger equation which includes the atomic field as well as the fields of the XUV and IR pulses. Also a simple semiempirical description based on sudden approximation is suggested which agrees very well with the exact solution.
Through solution of the multielectron, semi-relativistic, time-dependent Schr{o}dinger equation, we show that angular streaking produces strongly spin-polarized electrons in a noble gas. The degree of spin polarization increases with the Keldysh parameter, so that angular streaking -- ordinarily applied to investigate tunneling -- may be repurposed to generate strongly spin-polarized electron bunches. Additionally, we explore modifications of the angular streaking scheme that also enhance spin polarization.
Light-induced states are commonly observed in the photoionization spectra of laser-dressed atoms. The properties of autoionizing polaritons, entangled states of light and Auger resonances, however, are largely unexplored. We employ attosecond transient-absorption spectroscopy to study the evolution of autoionizing states in argon, dressed by a tunable femtosecond laser pulse. The avoided crossings between the $3s^{-1}4p$ and several light-induced states indicates the formation of polariton multiplets. We measure a controllable stabilization of the polaritons against ionization, in excellent agreement with emph{ab initio} theory. Using an extension of the Jaynes-Cummings model to autoionizing states, we show that this stabilization is due to the destructive interference between the Auger decay and the radiative ionization of the polaritonic components. These results give new insights into the optical control of electronic structure in the continuum, and unlock the door to applications of autoionizing polaritons in poly-electronic systems.
We apply a recently proposed theoretical concept and numerical approach to obtain time delays in extreme ultraviolet (XUV) photoionization of an electron in a short- or long-range potential. The results of our numerical simulations on a space-time grid are compared to those for the well-known Wigner-Smith time delay and different methods to obtain the latter time delay are reviewed. We further use our numerical method to analyze the effect of a near-infrared streaking field on the time delay obtained in the numerical simulations.
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) light pulses and to the asymptotic phase-shifts of photoelectron wave packets. Special emphasis is laid on time-delay experiments, where attosecond XUV pulses are used to photoionize target atoms at well-defined times, followed by a probing process in real time by a phase-locked, infrared laser field. In this way, the laser field serves as a clock to monitor the ionization event, but the observable delays do not correspond directly to the delay associated with single-photon ionization. Instead, a significant part of the observed delay originates from a measurement induced process, which obscures the single-photon ionization dynamics. This artifact is traced back to a phase-shift of the above-threshold ionization transition matrix element, which we call the continuum-continuum phase. It arises due to the laser-stimulated transitions between Coulomb continuum states. As we shall show here, these measurement-induced effects can be separated from the single-photon ionization process, using analytical expressions of universal character, so that eventually the attosecond time-delays in photoionization can be accessed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا