Do you want to publish a course? Click here

An Empirical Analysis of the Influence of Fault Space on Search-Based Automated Program Repair

85   0   0.0 ( 0 )
 Added by Ming Wen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Automated program repair (APR) has attracted great research attention, and various techniques have been proposed. Search-based APR is one of the most important categories among these techniques. Existing researches focus on the design of effective mutation operators and searching algorithms to better find the correct patch. Despite various efforts, the effectiveness of these techniques are still limited by the search space explosion problem. One of the key factors attribute to this problem is the quality of fault spaces as reported by existing studies. This motivates us to study the importance of the fault space to the success of finding a correct patch. Our empirical study aims to answer three questions. Does the fault space significantly correlate with the performance of search-based APR? If so, are there any indicative measurements to approximate the accuracy of the fault space before applying expensive APR techniques? Are there any automatic methods that can improve the accuracy of the fault space? We observe that the accuracy of the fault space affects the effectiveness and efficiency of search-based APR techniques, e.g., the failure rate of GenProg could be as high as $60%$ when the real fix location is ranked lower than 10 even though the correct patch is in the search space. Besides, GenProg is able to find more correct patches and with fewer trials when given a fault space with a higher accuracy. We also find that the negative mutation coverage, which is designed in this study to measure the capability of a test suite to kill the mutants created on the statements executed by failing tests, is the most indicative measurement to estimate the efficiency of search-based APR. Finally, we confirm that automated generated test cases can help improve the accuracy of fault spaces, and further improve the performance of search-based APR techniques.



rate research

Read More

Automated Program Repair (APR) is a fast growing area with numerous new techniques being developed to tackle one of the most challenging software engineering problems. APR techniques have shown promising results, giving us hope that one day it will be possible for software to repair itself. In this paper, we focus on the problem of objective performance evaluation of APR techniques. We introduce a new approach, Explaining Automated Program Repair (E-APR), which identifies features of buggy programs that explain why a particular instance is difficult for an APR technique. E-APR is used to examine the diversity and quality of the buggy programs used by most researchers, and analyse the strengths and weaknesses of existing APR techniques. E-APR visualises an instance space of buggy programs, with each buggy program represented as a point in the space. The instance space is constructed to reveal areas of hard and easy buggy programs, and enables the strengths and weaknesses of APR techniques to be identified.
Software debugging, and program repair are among the most time-consuming and labor-intensive tasks in software engineering that would benefit a lot from automation. In this paper, we propose a novel automated program repair approach based on CodeBERT, which is a transformer-based neural architecture pre-trained on large corpus of source code. We fine-tune our model on the ManySStuBs4J small and large datasets to automatically generate the fix codes. The results show that our technique accurately predicts the fixed codes implemented by the developers in 19-72% of the cases, depending on the type of datasets, in less than a second per bug. We also observe that our method can generate varied-length fixes (short and long) and can fix different types of bugs, even if only a few instances of those types of bugs exist in the training dataset.
The advance in machine learning (ML)-driven natural language process (NLP) points a promising direction for automatic bug fixing for software programs, as fixing a buggy program can be transformed to a translation task. While software programs contain much richer information than one-dimensional natural language documents, pioneering work on using ML-driven NLP techniques for automatic program repair only considered a limited set of such information. We hypothesize that more comprehensive information of software programs, if appropriately utilized, can improve the effectiveness of ML-driven NLP approaches in repairing software programs. As the first step towards proving this hypothesis, we propose a unified representation to capture the syntax, data flow, and control flow aspects of software programs, and devise a method to use such a representation to guide the transformer model from NLP in better understanding and fixing buggy programs. Our preliminary experiment confirms that the more comprehensive information of software programs used, the better ML-driven NLP techniques can perform in fixing bugs in these programs.
243 - Alan Romano 2021
Flaky tests have gained attention from the research community in recent years and with good reason. These tests lead to wasted time and resources, and they reduce the reliability of the test suites and build systems they affect. However, most of the existing work on flaky tests focus exclusively on traditional unit tests. This work ignores UI tests that have larger input spaces and more diverse running conditions than traditional unit tests. In addition, UI tests tend to be more complex and resource-heavy, making them unsuited for detection techniques involving rerunning test suites multiple times. In this paper, we perform a study on flaky UI tests. We analyze 235 flaky UI test samples found in 62 projects from both web and Android environments. We identify the common underlying root causes of flakiness in the UI tests, the strategies used to manifest the flaky behavior, and the fixing strategies used to remedy flaky UI tests. The findings made in this work can provide a foundation for the development of detection and prevention techniques for flakiness arising in UI tests.
We introduce Learn2fix, the first human-in-the-loop, semi-automatic repair technique when no bug oracle--except for the user who is reporting the bug--is available. Our approach negotiates with the user the condition under which the bug is observed. Only when a budget of queries to the user is exhausted, it attempts to repair the bug. A query can be thought of as the following question: When executing this alternative test input, the program produces the following output; is the bug observed? Through systematic queries, Learn2fix trains an automatic bug oracle that becomes increasingly more accurate in predicting the users response. Our key challenge is to maximize the oracles accuracy in predicting which tests are bug-exposing given a small budget of queries. From the alternative tests that were labeled by the user, test-driven automatic repair produces the patch. Our experiments demonstrate that Learn2fix learns a sufficiently accurate automatic oracle with a reasonably low labeling effort (lt. 20 queries). Given Learn2fixs test suite, the GenProg test-driven repair tool produces a higher-quality patch (i.e., passing a larger proportion of validation tests) than using manual test suites provided with the repair benchmark.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا