Do you want to publish a course? Click here

Development and Test of a uTPC Cluster Reconstruction for a Triple GEM Detector in Strong Magnetic Field

92   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Performance of triple GEM prototypes has been evaluated by means of a muon beam at the H4 line of the SPS test area at CERN. The data from two planar prototypes have been reconstructed and analyzed offline with two clusterization methods: the enter of gravity of the charge distribution and the micro Time Projection Chamber (muTPC). Concerning the spatial resolution, the charge centroid cluster reconstruction performs extremely well with no magnetic field: the resolution is well below 100 mum . Increasing the magnetic field intensity, the resolution degrades almost linearly as effect of the Lorentz force that displaces, broadens and asymmetrizes the electron avalanche. Tuning the electric fields of the GEM prototype we could achieve the unprecedented spatial resolution of 190 mum at 1 Tesla. In order to boost the spatial resolution with strong magnetic field and inclined tracks a muTPC cluster reconstruction has been investigated. Such a readout mode exploits the good time resolution of the GEM detector and electronics to reconstruct the trajectory of the particle inside the conversion gap. Beside the improvement of the spatial resolution, information on the track angle can be also extracted. The new clustering algorithm has been tested with diagonal tracks with no magnetic field showing a resolution between 100 um and 150 um for the incident angle ranging from 10{deg} to 45{deg} . Studies show similar performance with 1 Tesla magnetic field. This is the first use of a muTPC readout with a triple GEM detector in magnetic field. This study has shown that a combined readout is capable to guarantee stable performance over a broad spectrum of particle momenta and incident angles, up to a 1 Tesla magnetic field.



rate research

Read More

272 - R. P. Adak , S. Biswas , S. Das 2016
The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area > 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the test results are presented in this paper.
Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy resolution of 20%$div$30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 $mu$m. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.
Performance of triple GEM prototypes in strong magnetic field has been evaluated bymeans of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructedand analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combinationof the two reconstruction methods is capable to guarantee a spatial resolution better than 150{mu}min magnetic field up to a 1 T.
106 - A. Kozlov 2003
Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.
71 - M. Posik , B. Surrow 2018
Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of large GEM foils, however with the growing interest in GEM technology keeping up with the increasing demand for GEMs will be difficult. We present here an update on the assembly and testing of triple-GEM tracking detectors utilizing single-masked $40 times 40$ cm$^2$ commercial GEM foils produced by Tech-Etch. The triple-GEM detectors will allow us to characterize the overall quality of these Tech-Etch foils through gain, efficiency, and energy resolution measurements. This will be done by constructing four single-mask triple-GEM detectors, using foils manufactured by Tech-Etch, which follow the design used by the STAR Forward GEM Tracker (FGT). The stack is formed by gluing the foils to the frames and then gluing the frames together. The stack also includes a Tech-Etch produced high voltage foil and a 2D $r-phi$ readout foil. While one of the four triple-GEM detectors will be built identically to the STAR FGT, the other three will investigate ways in which to further decrease the material budget and increase the efficiency of the detector by incorporating perforated Kapton spacer rings rather than G10 spacing grids to reduce the dead area of the detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا