Do you want to publish a course? Click here

Deep-inelastic multinucleon transfer processes in the $^{16}$O+$^{27}$Al reaction

76   0   0.0 ( 0 )
 Added by Kazuyuki Sekizawa
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The reaction mechanism of deep-inelastic multinucleon transfer processes in the $^{16}$O+$^{27}$Al reaction at an incident $^{16}$O energy ($E_{rm lab}=134$ MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra and angular distributions for various transfer channels have been measured. The $Q$-value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay between fusion-fission, deep-inelastic, multinucleon transfer and particle evaporation processes are discussed.



rate research

Read More

Background: Multinucleon transfer reactions at energies around the Coulomb barrier offer a vital opportunity to study rich physics of nuclear structure and dynamics. Despite the continuous development in the field, we have still limited knowledge about how deformation - one of the representative nuclear structures - affects multinucleon transfer reactions. Purpose: To shed light on the effect of deformation in multinucleon transfer processes, we study the $^{16}$O+$^{154}$Sm reaction at $E_{rm lab}$=85 MeV (around the Coulomb barrier) and 134 MeV (substantially above the Coulomb barrier), where the target nucleus, $^{154}$Sm, is a well-established, deformed nucleus. Results: Angular distributions for elastic scattering and for various transfer channels were measured over a wide angular range at the BARC-TIFR pelletron-Linac accelerator facility, Mumbai. The $Q$-value- and angle-integrated isotope production cross sections have been extracted from the measured angular distributions. The experimental data are analyzed along with time-dependent Hartree-Fock calculations. For the lower incident energy case, we find a reasonable agreement between the measurements and the TDHF calculations for a-few-nucleon transfer channels; whereas TDHF underestimates cross sections for many-nucleon transfers, consistent with earlier works. On the other side, we find that calculated cross sections for secondary reaction products for the higher incident energy case, qualitatively explains the measured trends of isotopic distributions observed for the lower energy. The latter observation indicates possible underestimation of excitation energies in the present TDHF+GEMINI analysis. Although certain orientation effects were observed in TDHF results, it is difficult to disentangle them from the $Q$-value- and angle-integrated production cross sections. (Shortened due to the arXivs length limit.)
The elastic scattering angular distribution of the $^{16}$O$+^{60}$Ni system at $260$ MeV was measured in the range of the Rutherford cross section down to $7$ orders of magnitude below. The cross sections of the lowest $2^{+}$ and $3^{-}$ inelastic states of the target were also measured over a several orders of magnitude range. Coupled channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on $^{16}$O$+^{27}$Al elastic and inelastic scattering at $100$ and $280$ MeV. An analysis in terms of Dynamical Polarization Potentials (DPP) indicate the major role of coupled channel effects in the overlapping surface region of the colliding nuclei.
283 - M. Dozono , T. Uesaka , N. Fukuda 2020
The parity-transfer $({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction is presented as a new probe for investigating isovector $0^-$ states in nuclei. The properties of $0^-$ states provide a stringent test of the threshold density for pion condensation in nuclear matter. Utilizing a $0^+ rightarrow 0^-$ transition in the projectile, the parity-transfer reaction transfers an internal parity to a target nucleus, resulting in a unique sensitivity to unnatural-parity states. Consequently, the selectivity for $0^-$ states is higher than in other reactions employed to date. The probe was applied to a study of the $0^-$ states in ${}^{12}{rm B}$ via the ${}^{12}{rm C}({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction at $247~{rm MeV/u}$. The excitation energy spectra were deduced by detecting the ${}^{15}{rm O}+p$ pair produced in the decay of the ${}^{16}{rm F}$ ejectile. A known $0^-$ state at $E_x = 9.3~{rm MeV}$ was observed with an unprecedentedly high signal-to-noise ratio. The data also revealed new candidates of $0^-$ states at $E_x=6.6 pm 0.4$ and $14.8 pm 0.3~{rm MeV}$. The results demonstrate the high efficiency of $0^-$ state detection by the parity-transfer reaction.
Background: Recently, a systematic exploration of two-neutron transfer induced by the ($^{18}$O, $^{16}$O) reaction on different targets has been performed. The high resolution data have been collected at the MAGNEX magnetic spectrometer of the INFN-LNS laboratory in Catania and analyzed with the coupled reaction channel (CRC) approach. The simultaneous and sequential transfers of the two neutrons have been considered under the same theoretical framework without the need of adjustable factors in the calculations. Purpose: A detailed analysis of the one-neutron transfer cross sections is important to study the sequential two-neutron transfer. Here, we examine the ($^{18}$O, $^{17}$O) reaction on $^{16}$O, $^{28}$Si and $^{64}$Ni targets. These even-even nuclei allow for investigation of one-neutron transfer in distinct nuclear shell spaces. Method: The MAGNEX spectrometer was used to measure mass spectra of ejectiles and extract differential cross sections of one-neutron transfer to low-lying states. We adopted the same CRC formalism used in the sequential two-neutron transfer, including relevant channels and using spectroscopic amplitudes obtained from shell model calculations. We also compare with one-step distorted wave Born approximation (DWBA). Results: For the $^{18}$O + $^{16}$O and the $^{18}$O + $^{28}$O systems we used two interactions in the shell model. The experimental angular distributions are reasonably well reproduced by the CRC calculations. In the $^{18}$O + $^{64}$Ni system, we considered only one interaction and the theoretical curve describes the shape and order of magnitude observed in the experimental data. Conclusions: Comparisons between experimental, DWBA and CRC angle-integrated cross sections suggest that excitations before or after the transfer of neutron is relevant in the $^{18}$O + $^{16}$O and $^{18}$O + $^{64}$Ni systems.
Time-dependent Hartree-Fock (TDHF) theory has achieved a remarkable success in describing and understanding nuclear many-body dynamics from nucleons degrees of freedom. We here report our investigation of multinucleon transfer (MNT) processes employing the TDHF theory. To calculate transfer probabilities for channels specified by the number of protons and neutrons included in reaction products, a particle-number projection (PNP) method has been developed. The PNP method is also used to calculate excitation energies of reaction products. Combined use of the PNP method with a statistical model, we can evaluate MNT cross sections taking account of effects of particle evaporation. Using these methods, we evaluate MNT cross sections for $^{40,48}$Ca+$^{124}$Sn, $^{40}$Ca+$^{208}$Pb, and $^{58}$Ni+$^{208}$Pb reactions. From systematic analyses, we find that cross sections for channels with a large reaction probability are in good agreement with experimental data. However, the agreement becomes less accurate as the number of transferred nucleons increases. Possible directions to improve the description are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا