Genuinely entangled symmetric states with no $N$-partite correlations


Abstract in English

We investigate genuinely entangled $N$-qubit states with no $N$-partite correlations in the case of symmetric states. Using a tensor representation for mixed symmetric states, we obtain a simple characterization of the absence of $N$-partite correlations. We show that symmetric states with no $N$-partite correlations cannot exist for an even number of qubits. We fully identify the set of genuinely entangled symmetric states with no $N$-partite correlations in the case of three qubits, and in the case of rank-2 states. We present a general procedure to construct families for an arbitrary odd number of qubits.

Download