Period-tripling subharmonic oscillations in a driven superconducting resonator


Abstract in English

We have observed period-tripling subharmonic oscillations, in a superconducting coplanar waveguide resonator operated in the quantum regime, $k_B T ll hbaromega$. The resonator is terminated by a tunable inductance that provides a Kerr-type nonlinearity. We detected the output field quadratures at frequencies near the fundamental mode, $omega/2pi sim 5,$GHz, when the resonator was driven by a current at $3omega$ with an amplitude exceeding an instability threshold. The output radiation was red-detuned from the fundamental mode. We observed three stable radiative states with equal amplitudes and phase-shifted by $120^circ$. The downconversion from $3omega$ to $omega$ is strongly enhanced by resonant excitation of the second mode of the resonator, and the cross-Kerr effect. Our experimental results are in quantitative agreement with a model for the driven dynamics of two coupled modes.

Download