Do you want to publish a course? Click here

Computing Individual Risks based on Family History in Genetic Disease in the Presence of Competing Risks

72   0   0.0 ( 0 )
 Added by Olivier Bouaziz
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

When considering a genetic disease with variable age at onset (ex: diabetes , familial amyloid neuropathy, cancers, etc.), computing the individual risk of the disease based on family history (FH) is of critical interest both for clinicians and patients. Such a risk is very challenging to compute because: 1) the genotype X of the individual of interest is in general unknown; 2) the posterior distribution P(X|FH, T > t) changes with t (T is the age at disease onset for the targeted individual); 3) the competing risk of death is not negligible. In this work, we present a modeling of this problem using a Bayesian network mixed with (right-censored) survival outcomes where hazard rates only depend on the genotype of each individual. We explain how belief propagation can be used to obtain posterior distribution of genotypes given the FH, and how to obtain a time-dependent posterior hazard rate for any individual in the pedigree. Finally, we use this posterior hazard rate to compute individual risk, with or without the competing risk of death. Our method is illustrated using the Claus-Easton model for breast cancer (BC). This model assumes an autosomal dominant genetic risk factor such as non-carriers (genotype 00) have a BC hazard rate $lambda$ 0 (t) while carriers (genotypes 01, 10 and 11) have a (much greater) hazard rate $lambda$ 1 (t). Both hazard rates are assumed to be piecewise constant with known values (cuts at 20, 30,. .. , 80 years). The competing risk of death is derived from the national French registry.



rate research

Read More

Competing risks data are common in medical studies, and the sub-distribution hazard (SDH) ratio is considered an appropriate measure. However, because the limitations of hazard itself are not easy to interpret clinically and because the SDH ratio is valid only under the proportional SDH assumption, this article introduced an alternative index under competing risks, named restricted mean time lost (RMTL). Several test procedures were also constructed based on RMTL. First, we introduced the definition and estimation of RMTL based on Aalen-Johansen cumulative incidence functions. Then, we considered several combined tests based on the SDH and the RMTL difference (RMTLd). The statistical properties of the methods are evaluated using simulations and are applied to two examples. The type I errors of combined tests are close to the nominal level. All combined tests show acceptable power in all situations. In conclusion, RMTL can meaningfully summarize treatment effects for clinical decision making, and three combined tests have robust power under various conditions, which can be considered for statistical inference in real data analysis.
In clinical and epidemiological studies, hazard ratios are often applied to compare treatment effects between two groups for survival data. For competing risks data, the corresponding quantities of interest are cause-specific hazard ratios (CHRs) and subdistribution hazard ratios (SHRs). However, they all have some limitations related to model assumptions and clinical interpretation. Therefore, we introduce restricted mean time lost (RMTL) as an alternative that is easy to interpret in a competing risks framework. We propose a hypothetical test and sample size estimator based on the difference in RMTL (RMTLd). The simulation results show that the RMTLd test has robust statistical performance (both type I error and power). Meanwhile, the RMTLd-based sample size can approximately achieve the predefined power level. The results of two example analyses also verify the performance of the RMTLd test. From the perspectives of clinical interpretation, application conditions and statistical performance, we recommend that the RMTLd be reported with the HR when analyzing competing risks data and that the RMTLd even be regarded as the primary outcome when the proportional hazard assumption fails.
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regarded as the `inputs and the event times are the `outputs. This allows for highly flexible inference of non-linear relationships between covariates and event times. Many existing methods, such as the ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure time models where we focus on directly characterising the relationship between covariates and event times without any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and combinations of censored and truncated observations. We apply our approach to both simulated and experimental data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for each input, to competing risks survival data where multiple event types can occur. By tuning one of the model parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent thus allowing the specification of correlated risks. Simulation studies suggest that in some cases assuming dependence can lead to more accurate predictions.
The economic consequences of drought episodes are increasingly important, although they are often difficult to apprehend in part because of the complexity of the underlying mechanisms. In this article, we will study one of the consequences of drought, namely the risk of subsidence (or more specifically clay shrinkage induced subsidence), for which insurance has been mandatory in France for several decades. Using data obtained from several insurers, representing about a quarter of the household insurance market, over the past twenty years, we propose some statistical models to predict the frequency but also the intensity of these droughts, for insurers, showing that climate change will have probably major economic consequences on this risk. But even if we use more advanced models than standard regression-type models (here random forests to capture non linearity and cross effects), it is still difficult to predict the economic cost of subsidence claims, even if all geophysical and climatic information is available.
Survival analysis in the presence of multiple possible adverse events, i.e., competing risks, is a pervasive problem in many industries (healthcare, finance, etc.). Since only one event is typically observed, the incidence of an event of interest is often obscured by other related competing events. This nonidentifiability, or inability to estimate true cause-specific survival curves from empirical data, further complicates competing risk survival analysis. We introduce Siamese Survival Prognosis Network (SSPN), a novel deep learning architecture for estimating personalized risk scores in the presence of competing risks. SSPN circumvents the nonidentifiability problem by avoiding the estimation of cause-specific survival curves and instead determines pairwise concordant time-dependent risks, where longer event times are assigned lower risks. Furthermore, SSPN is able to directly optimize an approximation to the C-discrimination index, rather than relying on well-known metrics which are unable to capture the unique requirements of survival analysis with competing risks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا