Planck 2015 constraints on the non-flat $Lambda$CDM inflation model


Abstract in English

We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analyses of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.

Download