Do you want to publish a course? Click here

Efficient algorithm for boson sampling with partially distinguishable photons

71   0   0.0 ( 0 )
 Added by Jelmer Renema
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the output of a boson sampler fed with photons of partial distinguishability. We find conditions for which this algorithm is efficient, which gives a lower limit on the required indistinguishability to demonstrate a quantum advantage. Under these conditions, adding more photons only polynomially increases the computational cost to simulate a boson sampling experiment.

rate research

Read More

Boson Sampling is the problem of sampling from the same distribution as indistinguishable single photons at the output of a linear optical interferometer. It is an example of a non-universal quantum computation which is believed to be feasible in the near term and cannot be simulated on a classical machine. Like all purported demonstrations of quantum supremacy, this motivates optimizing classical simulation schemes for a realistic model of the problem, in this case Boson Sampling when the implementations experience lost or distinguishable photons. Although current simulation schemes for sufficiently imperfect boson sampling are classically efficient, in principle the polynomial runtime can be infeasibly large. In this work, we develop a scheme for classical simulation of Boson Sampling under uniform distinguishability and loss, based on the idea of sampling from distributions where at most k photons are indistinguishable. We show that asymptotically this scheme can provide a polynomial improvement in the runtime compared to classically simulating idealised Boson Sampling. More significantly, we show that in the regime considered experimentally relevant, our approach gives an substantial improvement in runtime over other classical simulation approaches.
Quantum metrology promises high-precision measurements beyond the capability of any classical techniques, and has the potential to be integral to investigative techniques. However, all sensors must tolerate imperfections if they are to be practical. Here we show that photons with perfectly overlapped modes, which are therefore fully indistinguishable, are not required for quantum-enhanced measurement, and that partially-distinguishable photons do not have to be engineered to mitigate the adverse effects of distinguishability. We quantify the effect of distinguishability on quantum metrology experiments, and report results of an experiment to verify that two- and four-photon states containing partially-distinguishable photons can achieve quantum-enhanced sensitivity with low-visibility quantum interference. This demonstrates that sources producing photons with mixed spectral states can be readily utilized for quantum metrology.
86 - Malte C. Tichy 2014
The collective interference of partially distinguishable bosons in multi-mode networks is studied via double-sided Feynman diagrams. The probability for many-body scattering events becomes a multi-dimensional tensor-permanent, which interpolates between distinguishable particles and identical bosons, and easily extends to mixed initial states. The permanent of the distinguishability matrix, composed of all mutual scalar products of the single-particle mode-functions, emerges as a natural measure for the degree of interference: It yields a bound on the difference between event probabilities for partially distinguishable bosons and the idealized species, and exactly quantifies the degree of bosonic bunching.
Boson-Sampling holds the potential to experimentally falsify the Extended Church Turing thesis. The computational hardness of Boson-Sampling, however, complicates the certification that an experimental device yields correct results in the regime in which it outmatches classical computers. To certify a boson-sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that were proposed as witnesses of Boson-Sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
We study the necessary conditions for bosons composed of two distinguishable fermions to exhibit bosonic-like behaviour. We base our analysis on tools of quantum information theory such as entanglement and the majorization criterion for probability distributions. In particular we scrutinize a recent interesting hypothesis by C. K. Law in the Ref. Phys. Rev. A 71, 034306 (2005) that suggests that the amount of entanglement between the constituent fermions is related to the bosonic properties of the composite boson. We show that a large amount of entanglement does not necessarily imply a good boson-like behaviour by constructing an explicit counterexample. Moreover, we identify more precisely the role entanglement may play in this situation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا