Do you want to publish a course? Click here

First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

79   0   0.0 ( 0 )
 Added by Lvc Publications
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$sqrt{{textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} textrm{kg m}^2$.



rate research

Read More

162 - J. Aasi , J. Abadie , B. P. Abbott 2012
This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.
We conduct an all-sky search for continuous gravitational waves in the LIGO O2 data from the Hanford and Livingston detectors. We search for nearly-monochromatic signals with frequency between 20.0 Hz and 585.15 Hz and spin-down between -2.6e-9 Hz/s and 2.6e-10 Hz/s. We deploy the search on the Einstein@Home volunteer-computing project and follow-up the waveforms associated with the most significant results with eight further search-stages, reaching the best sensitivity ever achieved by an all-sky survey up to 500 Hz. Six of the inspected waveforms pass all the stages but they are all associated with hardware-injections, which are fake signals simulated at the LIGO detector for validation purposes. We recover all these fake signals with consistent parameters. No other waveform survives, so we find no evidence of a continuous gravitational wave signal at the detectability level of our search. We constrain the h0 amplitude of continuous gravitational waves at the detector as a function of the signal frequency, in half-Hz bins. The most constraining upper limit at 163.0 Hz is h0 = 1.3e25, at the 90% confidence level. Our results exclude neutron stars rotating faster than 5 ms with equatorial ellipticities larger than 1e-7 closer than 100 pc. These are deformations that neutron star crusts could easily support, according to some models.
We present results of a high-frequency all-sky search for continuous gravitational waves from isolated compact objects in LIGOs 5th Science Run (S5) data, using the computing power of the Einstein@Home volunteer computing project. This is the only dedicated continuous gravitational wave search that probes this high frequency range on S5 data. We find no significant candidate signal, so we set 90%-confidence level upper-limits on continuous gravitational wave strain amplitudes. At the lower end of the search frequency range, around 1250 Hz, the most constraining upper-limit is $5.0times 10^{-24}$, while at the higher end, around 1500 Hz, it is $6.2times 10^{-24}$. Based on these upper-limits, and assuming a fiducial value of the principal moment of inertia of $10^{38}$kg$,$m$^2$, we can exclude objects with ellipticities higher than roughly $2.8times10^{-7}$ within 100 pc of Earth with rotation periods between 1.3 and 1.6 milliseconds.
We present results of a search for periodic gravitational wave signals with frequency between 20 and 400 Hz, from the neutron star in the supernova remnant G347.3-0.5, using LIGO O2 public data. The search is deployed on the volunteer computing project Einstein@Home, with thousands of participants donating compute cycles to make this endevour possible. We find no significant signal candidate and set the most constraining upper limits to date on the amplitude of gravitational wave signals from the target, corresponding to deformations below $10^{-6}$ in a large part of the band. At the frequency of best strain sensitivity, near $166$ Hz, we set 90% confidence upper limits on the gravitational wave intrinsic amplitude of $h_0^{90%}approx 7.0times10^{-26}$. Over most of the frequency range our upper limits are a factor of 20 smaller than the indirect age-based upper limit.
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequencys time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as StackSlide, averages normalized power from each SFT. A weighted Hough scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as PowerFlux, is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin-axes, is 4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا