Do you want to publish a course? Click here

The origin of the turn-on phenomenon in Td-MoTe2

118   0   0.0 ( 0 )
 Added by X. Luo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We did the resistivity and scanning tunneling microscope/spectroscopy (STM/STS) experiments at different temperatures and magnetic fields to investigate the origin of the turn-on (t-o) phenomenon of Td-MoTe2. There are two interesting observations. Firstly, magnetoresistance (MR) follows the Kohler rule scaling: MR - (H/p0)m with m - 1.92 and the t-o temperature T under different magnetic fields can also be scaled by T - (H-Hc)u with u = 1/2. Secondly, a combination of compensated electron-hole pockets and a possible electronic structure phase transition induced by the temperature have been validated in Td-MoTe2 by the STM/STS experiments. Compared with the STS of Td-MoTe2 single crystal under H = 0, the STS hardly changes even when the applied field is up to 7 T. The origins of the t-o phenomenon in Td-MoTe2 are discussed. Meanwhile, we analyzed the universality and applicability of the t-o phenomenon in the extreme MR materials with almost balanced hole and electron densities as well as with other systems where the density of hole or electron is in dominant position.



rate research

Read More

A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative turn-on temperature behavior: when the applied magnetic field $H$ is above certain value, the resistivity versus temperature $rho(T)$ curve shows a minimum at a field dependent temperature $T^*$, which has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. Here, we demonstrate that $rho(T)$ curves with turn-on behavior in the newly discovered XMR material WTe$_2$ can be scaled as MR $sim(H/rho_0)^m$ with $mapprox 2$ and $rho_0$ being the resistivity at zero-field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature $T^* sim (H-H_c)^ u$ with $ u approx 1/2$, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity $rho^* approx 2 rho_0$ at the onset of the XMR behavior, which fits the data remarkably well. These results exclude the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the low-temperature XMR in WTe$_2$. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials.
We investigate the dependence of the electrical resistivity of $sim 60 $nm thick single crystalline graphite samples on the defect concentration produced by proton irradiation at very low fluences. We show that the resistivity decreases few percent at room temperature after inducing defects at concentrations as low as $sim 0.1 $ppm due to the increase in the carrier density, in agreement with theoretical estimates. The overall results indicate that the carrier densities measured in graphite are not intrinsic but related to defects and impurities.
We found that a high mobility semimetal 1T-MoTe2 shows a significant pressure-dependent change in the cryogenic thermopower in the vicinity of the critical pressure, where the polar structural transition disappears. With the application of a high pressure of 0.75 GPa, while the resistivity becomes as low as 10 {mu}{Omega}cm, thermopower reached the maximum value of 60 {mu}VK-1 at 25 K, leading to a giant thermoelectric power factor of 300 {mu}WK-2cm-1. Based on semiquantitative analyses, the origin of this behavior is discussed in terms of inelastic electron-phonon scattering enhanced by the softening of zone center phonon modes associated with the polar structural instability.
Molybdenum ditelluride, MoTe2, is a versatile material where the topological phase can be readily tuned by manipulating the associated structural phase transition. The fine details of the band structure of MoTe2, key to understanding its topological properties, have proven difficult to disentangle experientially due to the multi-band character of the material. Through experimental optical conductivity spectra, we detect two strong low-energy interband transitions. Both are linked to excitations between spin-orbit split bands. The lowest interband transition shows a strong thermal shift, pointing to a chemical potential that dramatically decreases with temperature. With the help of ab initio calculations and a simple two-band model, we give qualitative and quantitative explanation of the main features in the temperature-dependent optical spectra up to 400 meV.
We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks around 70 K, which, together with structural, thermodynamic measurements, and electron-phonon coupling calculations, demonstrate a temperature-induced transition between two topological phases previously identified by contrasting spectroscopic measurements. An analysis of experimental data suggests electron-phonon coupling as the main driving mechanism for the change of key topological characters in the electronic structure of MoTe2.We also find the phase transition to be sensitive to sample conditions distinguished by synthesis methods. These discoveries of temperature and material condition-dependent topological phase evolutions and transitions in MoTe2 advance the fundamental understanding of the underlying physics and enable an effective approach to tuning Weyl semimetal states for technological applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا