Do you want to publish a course? Click here

In-vacuo-dispersion-like spectral lags in gamma-ray bursts

129   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Some recent studies exposed rather strong statistical evidence of in-vacuo-dispersion-like spectral lags for gamma-ray bursts (GRBs), a linear correlation between time of observation and energy of GRB particles. Those results focused on testing in-vacuo dispersion for the most energetic GRB particles, and in particular only included photons with energy at emission greater than 40 GeV. We here extend the window of the statistical analysis down to 5 GeV and find results that are consistent with what had been previously noticed at higher energies.



rate research

Read More

Over the last 15 years there has been considerable interest in the possibility of quantum-gravity-induced in-vacuo dispersion, the possibility that spacetime itself might behave essentially like a dispersive medium for particle propagation. Two very recent studies have exposed what might be in-vacuo dispersion features for GRB (gamma-ray-burst) neutrinos of energy in the range of 100 TeV and for GRB photons with energy in the range of 10 GeV. We here show that these two features are roughly compatible with a description such that the same effects apply over 4 orders of magnitude in energy. We also characterize quantitatively how rare it would be for such features to arise accidentally, as a result of (still unknown) aspects of the mechanisms producing photons at GRBs or as a result of background neutrinos accidentally fitting the profile of a GRB neutrino affected by in-vacuo dispersion.
108 - L. Chen , Y.Q. Lou (2 , 3 2004
Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given long GRB.
In this paper, we restudy the spectral lag features of short bright gamma-ray bursts (T90 < 2.6s) with a BATSE time-tagged event (TTE) sample including 65 single pulse bursts. We also make an investigation on the characteristics of ratios between the spectral lag and the full width at half maximum ($FWHM$) of the pulses, called relative spectral lags (RSLs). We draw the conclusions as follows: 1) Spectral lags of short GRBs are normally distributed and concentrated on around the value of 0.014 with 40 percent of them having negative lags. With K-S test, we find the lag distribution is identical with a normal one caused by white noises, which indicates the lags of the vast majority of short bursts are so small that they are negligible as Norris et al. have suggested.
We investigate prolonged engine activities of short gamma-ray bursts (SGRBs), such as extended and/or plateau emissions, as high-energy gamma-ray counterparts to gravitational waves (GWs). Binary neutron-star mergers lead to relativistic jets and merger ejecta with $r$-process nucleosynthesis, which are observed as SGRBs and kilonovae/macronovae, respectively. Long-term relativistic jets may be launched by the merger remnant as hinted in X-ray light curves of some SGRBs. The prolonged jets may dissipate their kinetic energy within the radius of the cocoon formed by the jet-ejecta interaction. Then the cocoon supplies seed photons to non-thermal electrons accelerated at the dissipation region, causing high-energy gamma-ray production through the inverse Compton scattering process. We numerically calculate high-energy gamma-ray spectra in such a system using a one-zone and steady-state approximation, and show that GeV--TeV gamma-rays are produced with a duration of $10^2-10^5$ seconds. They can be detected by {it Fermi}/LAT or CTA as gamma-ray counterparts to GWs.
We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{pm}^2=p^2 pm 2xi p^3/M_{Pl}, where pm denotes different circular polarization states of the photon, the parameter xi is constrained as |xi|<O(10^{-15}). Barring precise cancellation between quantum gravity effects and dark energy effects, the stringent limit on the CPT-violating effect leads to the expectation that quantum gravity presumably respects the CPT invariance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا