Do you want to publish a course? Click here

Strong Uniqueness of Singular Stochastic Delay Equations

98   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English
 Authors D. Ba~nos




Ask ChatGPT about the research

In this article we introduce a new method for the construction of unique strong solutions of a larger class of stochastic delay equations driven by a discontinuous drift vector field and a Wiener process. The results obtained in this paper can be regarded as an infinite-dimensional generalization of those of A. Y. Veretennikov [42] in the case of certain stochastic delay equations with irregular drift coefficients. The approach proposed in this work rests on Malliavin calculus and arguments of a local time variational calculus, which may also be used to study other types of stochastic equations as e.g. functional It^{o}-stochastic differential equations in connection with path-dependent Kolmogorov equations [15].



rate research

Read More

In this paper we shall establish an existence and uniqueness result for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter $H > frac{1}{2} and a multidimensional standard Brownian motion under a weaker condition than the Lipschitz one.
We show that the Markov semigroups generated by a large class of singular stochastic PDEs satisfy the strong Feller property. These include for example the KPZ equation and the dynamical $Phi^4_3$ model. As a corollary, we prove that the Brownian bridge measure is the unique invariant measure for the KPZ equation with periodic boundary conditions.
We study the weak limits of solutions to SDEs [dX_n(t)=a_nbigl(X_n(t)bigr),dt+dW(t),] where the sequence ${a_n}$ converges in some sense to $(c_- 1mkern-4.5mumathrm{l}_{x<0}+c_+ 1mkern-4.5mumathrm{l}_{x>0})/x+gammadelta_0$. Here $delta_0$ is the Dirac delta function concentrated at zero. A limit of ${X_n}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
We solve a class of BSDE with a power function $f(y) = y^q$, $q > 1$, driving its drift and with the terminal boundary condition $ xi = infty cdot mathbf{1}_{B(m,r)^c}$ (for which $q > 2$ is assumed) or $ xi = infty cdot mathbf{1}_{B(m,r)}$, where $B(m,r)$ is the ball in the path space $C([0,T])$ of the underlying Brownian motion centered at the constant function $m$ and radius $r$. The solution involves the derivation and solution of a related heat equation in which $f$ serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain the BSDE has continuous sample paths with the prescribed terminal value.
We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting Hawkes processes in mathematical finance. The strategy we adopt for the existence part is based on approximations using stochastic Volterra equations with $L^2$-kernels combined with a general stability result. Most importantly, we establish weak uniqueness using a duality argument on the Fourier--Laplace transform via a deterministic Riccati--Volterra integral equation. We illustrate the applicability of our results on Hawkes processes and a class of hyper-rough Volterra Heston models with a Hurst index $H in (-1/2,1/2]$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا