We discuss the $U(1)$ gauged Q-balls with $N$-power potential to examine their properties analytically. More numerical descriptions and some analytical consideration have been contributed to the models governed by four-power potential. We also demonstrate strictly some new limitations that the stable $U(1)$ gauged Q-balls should accept instead of estimating those with only some specific values of model variables numerically. Having derived the explicit expressions of radius, the Noether charge and energy of the gauged Q-balls, we find that these models under the potential of matter field with general power and the boundary conditions will exist instead of dispersing and decaying. The Noether charge of the large gauged Q-balls must be limited. The mass parameter of the model can not be tiny.
In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls. In particular, we show that the standard methods that are suitable for establishing the classical stability criterion for ordinary (nongauged) one-field and two-field Q-balls are not effective in the case of U(1) gauged Q-balls, although all the technical steps of calculations can be performed in the same way as those for ordinary Q-balls. We also present the results of numerical simulations in models with different scalar field potentials, explicitly demonstrating that, in general, the regions of stability of U(1) gauged Q-balls are not defined in the same way as in the case of ordinary Q-balls. Consequently, the classical stability criterion for ordinary Q-balls cannot be applied to U(1) gauged Q-balls in the general case.
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
Radially excited $U(1)$ gauged $Q$-balls are studied using both analytical and numerical methods. Unlike the nongauged case, there exists only a finite number of radially excited gauged $Q$-balls at given values of the models parameters. Similarly to the unexcited gauged $Q$-ball, the radially excited one cannot possess the Noether charge exceeding some limiting value. This limiting Noether charge decreases with an increase in the radial excitation of the gauged $Q$-ball. For $n$-th radial excitation, there is a maximum allowable value of the gauge coupling constant, and the existence of the $n$-th radially excited gauged $Q$-ball becomes impossible if the gauge coupling constant exceeds this limiting value. Similarly to the limiting Noether charge, the limiting gauge coupling constant decreases with an increase in the radial excitation. At a fixed Noether charge, the energy of the gauged $Q$-ball increases with an increase in the radial excitation, and thus the radially excited gauged $Q$-ball is unstable against transit into a less excited or unexcited one.
We show, by numerical calculations, that there exist three-types of stationary and spherically symmetric nontopological soliton solutions (NTS-balls) with large sizes in the coupled system consisting of a complex matter scalar field, a U(1) gauge field, and a complex Higgs scalar field that causes spontaneously symmetry breaking. Under the assumption of symmetries, the coupled system reduces to a dynamical system with three degrees of freedoms governed by an effective action. The effective potential in the action has stationary points. The NTS-balls with large sizes are described by bounce solutions that start off an initial stationary point, and traverse to the final stationary point, vacuum stationary point. According to the choice of the initial stationary point, there appear three types of NTS-balls: dust balls, shell balls, and potential balls with respect to their internal structures.
The analytical description on the Friedberg-Lee-Sirlin typed Q-balls is performed. The two-field Q-balls are also discussed under the one-loop motivated effective potential subject to the temperature. We prove strictly to confirm that the parameters from the potential can be regulated to lead the energy per unit charge of Q-balls to be lower to keep the model stable. If the energy density is low enough, the Q-balls can become candidates of dark matter. It is also shown rigorously that the two-field Q-balls can generate in the first-order phase transition and survive while they are affected by the expansion of the universe. The analytical investigations show that the Q-balls with one-loop motivated effective potential can exist with the adjustment of coefficients of terms. We cancel the infinity in the energy to obtain the necessary conditions consist with those imposed in the previous work. According to the explicit expressions, the lower temperature will reduce the energy density, so there probably have been more and more stable Friedberg-Lee-Sirlin typed Q-balls to become the dark matter in the expansion of the universe.
Yue Zhong
,Lingshen Chen
,Hongbo Cheng
.
(2017)
.
"The further analytical discussions on the $U(1)$ gauged Q-balls with $N$-power potential"
.
Hongbo Cheng
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا