Observation of the doubly charmed baryon $Xi_{cc}^{++}$


Abstract in English

A highly significant structure is observed in the $Lambda_c^+K^-pi^+pi^+$ mass spectrum, where the $Lambda_c^+$ baryon is reconstructed in the decay mode $pK^-pi^+$. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon $Xi_{cc}^{++}$. The difference between the masses of the $Xi_{cc}^{++}$ and $Lambda_c^+$ states is measured to be $1334.94 pm 0.72 (mathrm{stat}) pm 0.27 (mathrm{syst}~mathrm{MeV}/c^2$, and the $Xi_{cc}^{++}$ mass is then determined to be $3621.40 pm 0.72 (mathrm{stat}) pm 0.27 (mathrm{syst} pm 0.14 , (Lambda_c^+)~mathrm{MeV}/c^2$, where the last uncertainty is due to the limited knowledge of the $Lambda_c^+$ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 $mathrm{fb}^{-1}$, and confirmed in an additional sample of data collected at 8 TeV.

Download