Do you want to publish a course? Click here

SSGAN: Secure Steganography Based on Generative Adversarial Networks

106   0   0.0 ( 0 )
 Added by Haichao Shi
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative networks. The generative network mainly evaluates the visual quality of the generated images for steganography, and the discriminative networks are utilized to assess their suitableness for information hiding. Different from the existing work which adopts Deep Convolutional Generative Adversarial Networks, we utilize another form of generative adversarial networks. By using this new form of generative adversarial networks, significant improvements are made on the convergence speed, the training stability and the image quality. Furthermore, a sophisticated steganalysis network is reconstructed for the discriminative network, and the network can better evaluate the performance of the generated images. Numerous experiments are conducted on the publicly available datasets to demonstrate the effectiveness and robustness of the proposed method.



rate research

Read More

60 - Jia Liu , Yan Ke , Yu Lei 2019
In the past few years, the Generative Adversarial Network (GAN) which proposed in 2014 has achieved great success. GAN has achieved many research results in the field of computer vision and natural language processing. Image steganography is dedicated to hiding secret messages in digital images, and has achieved the purpose of covert communication. Recently, research on image steganography has demonstrated great potential for using GAN and neural networks. In this paper we review different strategies for steganography such as cover modification, cover selection and cover synthesis by GANs, and discuss the characteristics of these methods as well as evaluation metrics and provide some possible future research directions in image steganography.
Generative linguistic steganography mainly utilized language models and applied steganographic sampling (stegosampling) to generate high-security steganographic text (stegotext). However, previous methods generally lead to statistical differences between the conditional probability distributions of stegotext and natural text, which brings about security risks. In this paper, to further ensure security, we present a novel provably secure generative linguistic steganographic method ADG, which recursively embeds secret information by Adaptive Dynamic Grouping of tokens according to their probability given by an off-the-shelf language model. We not only prove the security of ADG mathematically, but also conduct extensive experiments on three public corpora to further verify its imperceptibility. The experimental results reveal that the proposed method is able to generate stegotext with nearly perfect security.
Nowadays, target recognition technique plays an important role in many fields. However, the current target image information based methods suffer from the influence of image quality and the time cost of image reconstruction. In this paper, we propose a novel imaging-free target recognition method combining ghost imaging (GI) and generative adversarial networks (GAN). Based on the mechanism of GI, a set of random speckles sequence is employed to illuminate target, and a bucket detector without resolution is utilized to receive echo signal. The bucket signal sequence formed after continuous detections is constructed into a bucket signal array, which is regarded as the sample of GAN. Then, conditional GAN is used to map bucket signal array and target category. In practical application, the speckles sequence in training step is employed to illuminate target, and the bucket signal array is input GAN for recognition. The proposed method can improve the problems caused by conventional recognition methods that based on target image information, and provide a certain turbulence-free ability. Extensive experiments show that the proposed method achieves promising performance.
98 - Mai Xu , Li Yang , Xiaoming Tao 2019
When watching omnidirectional images (ODIs), subjects can access different viewports by moving their heads. Therefore, it is necessary to predict subjects head fixations on ODIs. Inspired by generative adversarial imitation learning (GAIL), this paper proposes a novel approach to predict saliency of head fixations on ODIs, named SalGAIL. First, we establish a dataset for attention on ODIs (AOI). In contrast to traditional datasets, our AOI dataset is large-scale, which contains the head fixations of 30 subjects viewing 600 ODIs. Next, we mine our AOI dataset and determine three findings: (1) The consistency of head fixations are consistent among subjects, and it grows alongside the increased subject number; (2) The head fixations exist with a front center bias (FCB); and (3) The magnitude of head movement is similar across subjects. According to these findings, our SalGAIL approach applies deep reinforcement learning (DRL) to predict the head fixations of one subject, in which GAIL learns the reward of DRL, rather than the traditional human-designed reward. Then, multi-stream DRL is developed to yield the head fixations of different subjects, and the saliency map of an ODI is generated via convoluting predicted head fixations. Finally, experiments validate the effectiveness of our approach in predicting saliency maps of ODIs, significantly better than 10 state-of-the-art approaches.
62 - Shiqing Fan , Ye Luo 2021
Low-quality face image restoration is a popular research direction in todays computer vision field. It can be used as a pre-work for tasks such as face detection and face recognition. At present, there is a lot of work to solve the problem of low-quality faces under various environmental conditions. This paper mainly focuses on the restoration of motion-blurred faces. In increasingly abundant mobile scenes, the fast recovery of motion-blurred faces can bring highly effective speed improvements in tasks such as face matching. In order to achieve this goal, a deblurring method for motion-blurred facial image signals based on generative adversarial networks(GANs) is proposed. It uses an end-to-end method to train a sharp image generator, i.e., a processor for motion-blurred facial images. This paper introduce the processing progress of motion-blurred images, the development and changes of GANs and some basic concepts. After that, it give the details of network structure and training optimization design of the image processor. Then we conducted a motion blur image generation experiment on some general facial data set, and used the pairs of blurred and sharp face image data to perform the training and testing experiments of the processor GAN, and gave some visual displays. Finally, MTCNN is used to detect the faces of the image generated by the deblurring processor, and compare it with the result of the blurred image. From the results, the processing effect of the deblurring processor on the motion-blurred picture has a significant improvement both in terms of intuition and evaluation indicators of face detection.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا