In this paper, we propose a new method for evaluating scalar one-loop Feynman integrals in generalized D-dimension. The calculations play an important building block for two-loop and higher-loop corrections to the processes at future colliders such as the Large Hadron Collider (LHC) and the International Linear Collider (ILC). In this method, scalar one-loop N-point functions will be presented as the one-fold Mellin-Barnes representation of (N-1)-point ones with shifting space-time dimension. This representation offers a clear advantage that we can construct recursively the analytic expressions for N-point functions from the basic ones which are one-point functions. The compact formulae for scalar one-loop two-point functions with massive internal lines and three-point, four-point functions with massless internal lines are given as examples in this article. In particular, they are written in terms of generalized hypergeometric series such as Gauss, Appell F 1 functions. We also perform a sample numerical check for the analytical expressions in this report by comparing with LoopTools and AMBRE/MB. We find that the numerical results from this work are in good agreement with LoopTools at $epsilon^0$ -expansion and AMBRE/MB at higher-order of $epsilon$-expansion, at higher D-dimension.