A hot Saturn on an eccentric orbit around the giant star EPIC228754001


Abstract in English

Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type stars companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot-Jupiters orbiting solar-type stars. The reason of this distinctive feature in the semimajor-axis distribution has been theorized to be the result of the stellar evolution and/or due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years, a handful of transiting short-period planets (P$lesssim$ 10 days) have been found around giant stars, thanks to the high precision photometric data obtained initially by the Kepler mission, and later by its two-wheels extension K2. These new discoveries, have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive sub-stellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017). The main orbital parameters of EPIC,228754001,$b$, obtained with all the available data for the system, are the following: $P$ = 9.1708 $pm$ 0.0025 $d$, $e$ = 0.290 $pm$ 0.049, Mp = 0.495 $pm$ 0.007 Mjup ,and Rp = 1.089 $pm$ 0.006 Rjup. This is the fifth known planet orbiting any giant star with $a < 0.1$, and the most eccentric one among them, making EPIC,228754001,$b$ a very interesting object.

Download