Spatial asymptotics of Greens function for elliptic operators and applications: a.c. spectral type, wave operators for wave equations


Abstract in English

In three-dimensional case, we consider two classical operators: Schrodinger operator and an operator in the divergence form. For slowly-decaying oscillating potentials, we establish spatial asymptotics of the Greens function. The main term in this asymptotics involves vector-valued analytic function whose behavior is studied away from the spectrum. The absolute continuity of the spectrum is established as a corollary. For the operator in the divergence form, we consider the wave equation and establish existence of wave operators.

Download