Do you want to publish a course? Click here

MC^2: A deeper look at ZwCl 2341.1+0000 with Bayesian galaxy clustering and weak lensing analyses

78   0   0.0 ( 0 )
 Added by Bryant Benson
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated ($sim$3 Mpc) double radio relics, was thought to be an extremely massive ($10-30 times 10^{14} M_odot$) and complex system with little known about its merger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 confirmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid overfitting, which we discover can bias total dynamical mass estimates high, we find that a three-substructure model with a total dynamical mass estimate of $9.39 pm 0.81 times 10^{14} M_odot$ is favored. We also present deep Subaru imaging and perform the first weak lensing analysis on this system, obtaining a weak lensing mass estimate of $5.57 pm 2.47 times 10^{14} M_odot$. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of $sim$10$^{+34}_{-6}$ degrees and the collision speed at pericenter is $sim$1900$^{+300}_{-200}$ km/s.



rate research

Read More

The galaxy cluster ZwCl 2341.1+0000 is a merging system at z=0.27, which hosts two radio relics and a central, faint, filamentary radio structure. The two radio relics have unusually flat integrated spectral indices of -0.49 +/- 0.18 and -0.76 +/- 0.17, values that cannot be easily reconciled with the theory of standard diffusive shock acceleration of thermal particles at weak merger shocks. We present imaging results from XMM-Newton and Chandra observations of the cluster, aimed to detect and characterise density discontinuities in the ICM. As expected, we detect a density discontinuity near each of the radio relics. However, if these discontinuities are the shock fronts that fuelled the radio emission, then their Mach numbers are surprisingly low, both <=2. We studied the aperture of the density discontinuities, and found that while the NW discontinuity spans the whole length of the NW radio relic, the arc spanned by the SE discontinuity is shorter than the arc spanned by the SE relic. This startling result is in apparent contradiction with our current understanding of the origin of radio relics. Deeper X-ray data are required to confirm our results and to determine the nature of the density discontinuities.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
Angular two-point statistics of large-scale structure observables are important cosmological probes. To reach the high accuracy required by the statistical precision of future surveys, some of these statistics may need to be computed without the commonly employed Limber approximation; the exact computation however requires integration over Bessel functions, and a brute-force evaluation is slow to converge. We present a new method based on our generalized FFTLog algorithm for the efficient computation of angular power spectra beyond the Limber approximation. The new method significantly simplifies the calculation and improves the numerical speed and stability. It is easily extended to handle integrals involving derivatives of Bessel functions, making it equally applicable to numerically more challenging cases such as contributions from redshift-space distortions and Doppler effects. We implement our method for galaxy clustering and galaxy-galaxy lensing power spectra. We find that using the Limber approximation for galaxy clustering in future analyses like LSST Year 1 and DES Year 6 may cause significant biases in cosmological parameters, indicating that going beyond the Limber approximation is necessary for these analyses.
We compare predictions for galaxy-galaxy lensing profiles and clustering from the Henriques et al. (2015) public version of the Munich semi-analytical model of galaxy formation (SAM) and the IllustrisTNG suite, primarily TNG300, with observations from KiDS+GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_ast > 10^{11},M_odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode AGN accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. (2017). Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only ($chi^2 = 1.81$ compared to $chi^2 = 7.79$ for the SAM), and locally brightest galaxies samples ($chi^2 = 3.80$ compared to $chi^2 = 5.01$). With added dust corrections to the colours it matches the SDSS clustering signal well for red low mass galaxies. We find that both the SAMs and TNG300 predict $sim 50,%$ excessive lensing signals for intermediate mass red galaxies with $10.2 < log_{10} M_ast [ M_odot ] < 11.2$ at $r approx 0.6,h^{-1},mathrm{Mpc}$, which require further theoretical development.
Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster and less noisy than estimation from data or simulations. However, the transform of covariances from Fourier space to real space involves integrals with two Bessel integrals, which are numerically slow and easily affected by numerical uncertainties. Inaccurate covariances may lead to significant errors in the inference of the cosmological parameters. In this paper, we introduce a 2D-FFTLog algorithm for efficient, accurate and numerically stable computation of non-Gaussian real space covariances for both 3D and projected statistics. The 2D-FFTLog algorithm is easily extended to perform real space bin-averaging. We apply the algorithm to the covariances for galaxy clustering and weak lensing for a Dark Energy Survey Year 3-like and a Rubin Observatorys Legacy Survey of Space and Time Year 1-like survey, and demonstrate that for both surveys, our algorithm can produce numerically stable angular bin-averaged covariances with the flat sky approximation, which are sufficiently accurate for inferring cosmological parameters. The code CosmoCov for computing the real space covariances with or without the flat sky approximation is released along with this paper.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا