Dy doped BiFeO$_3$ : A Bulk Ceramic with Improved Multiferroic Properties Compared to Nano Counterparts


Abstract in English

The synthesis as well as structural, multiferroic and optical characterization of Dy doped BiFeO$_3$ multiferroic ceramic are presented. Bulk polycrystalline Bi$_{0.9}$Dy$_{0.1}$FeO$_3$ sample is synthesized by solid state reaction, while their nano counterparts are prepared using ultrasonic probe sonication technique. Significant improvement of phase purity in the as synthesized samples is observed after the doping of Dy both in bulk Bi$_{0.9}$Dy$_{0.1}$FeO$_3$ sample and corresponding nanoparticles as evidenced from Rietveld refinement. Magnetization measurements using SQUID magnetometer exhibit enhanced magnetic properties for Dy doped bulk Bi$_{0.9}$Dy$_{0.1}$FeO$_3$ ceramic compared to their nanostructured counterparts as well as undoped BiFeO$_3$. Within the applied field range, saturation polarization is observed for Bi$_{0.9}$Dy$_{0.1}$FeO$_3$ bulk ceramic only. As a result, intrinsic ferroelectric behavior is obtained just for this sample. Optical bandgap measurements reveal lower bandgap for Dy doped bulk Bi$_{0.9}$Dy$_{0.1}$FeO$_3$ ceramic compared to that of corresponding nanoparticles and undoped BiFeO$_3$. The outcome of this investigation demonstrates the potential of Dy as a doping element in BiFeO$_3$ that provides a bulk ceramic material with improved multiferroic and optical properties compared to those of corresponding nanoparticles which involve rigorous synthesis procedure.

Download