Do you want to publish a course? Click here

Superpixel-based Semantic Segmentation Trained by Statistical Process Control

91   0   0.0 ( 0 )
 Added by Hyojin Park
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and testing of these methods have a lot of redundant operations. To resolve this problem, the proposed network is trained and tested with only 0.37% of total pixels by superpixel-based sampling and largely reduced the complexity of upsampling calculation. The hypercolumn feature maps are constructed by pyramid module in combination with the convolution layers of the base network. Since the proposed method uses a very small number of sampled pixels, the end-to-end learning of the entire network is difficult with a common learning rate for all the layers. In order to resolve this problem, the learning rate after sampling is controlled by statistical process control (SPC) of gradients in each layer. The proposed method performs better than or equal to the conventional methods that use much more samples on Pascal Context, SUN-RGBD dataset.



rate research

Read More

Along with predictive performance and runtime speed, reliability is a key requirement for real-world semantic segmentation. Reliability encompasses robustness, predictive uncertainty and reduced bias. To improve reliability, we introduce Superpixel-mix, a new superpixel-based data augmentation method with teacher-student consistency training. Unlike other mixing-based augmentation techniques, mixing superpixels between images is aware of object boundaries, while yielding consistent gains in segmentation accuracy. Our proposed technique achieves state-of-the-art results in semi-supervised semantic segmentation on the Cityscapes dataset. Moreover, Superpixel-mix improves the reliability of semantic segmentation by reducing network uncertainty and bias, as confirmed by competitive results under strong distributions shift (adverse weather, image corruptions) and when facing out-of-distribution data.
In this work, we evaluate the use of superpixel pooling layers in deep network architectures for semantic segmentation. Superpixel pooling is a flexible and efficient replacement for other pooling strategies that incorporates spatial prior information. We propose a simple and efficient GPU-implementation of the layer and explore several designs for the integration of the layer into existing network architectures. We provide experimental results on the IBSR and Cityscapes dataset, demonstrating that superpixel pooling can be leveraged to consistently increase network accuracy with minimal computational overhead. Source code is available at https://github.com/bermanmaxim/superpixPool
Although deep learning greatly improves the performance of semantic segmentation, its success mainly lies in object central areas without accurate edges. As superpixels are a popular and effective auxiliary to preserve object edges, in this paper, we jointly learn semantic segmentation with trainable superpixels. We achieve it with fully-connected layers with Transparent Initialization (TI) and efficient logit consistency using a sparse encoder. The proposed TI preserves the effects of learned parameters of pretrained networks. This avoids a significant increase of the loss of pretrained networks, which otherwise may be caused by inappropriate parameter initialization of the additional layers. Meanwhile, consistent pixel labels in each superpixel are guaranteed by logit consistency. The sparse encoder with sparse matrix operations substantially reduces both the memory requirement and the computational complexity. We demonstrated the superiority of TI over other parameter initialization methods and tested its numerical stability. The effectiveness of our proposal was validated on PASCAL VOC 2012, ADE20K, and PASCAL Context showing enhanced semantic segmentation edges. With quantitative evaluations on segmentation edges using performance ratio and F-measure, our method outperforms the state-of-the-art.
Recently, some approaches are proposed to harness deep convolutional networks to facilitate superpixel segmentation. The common practice is to first evenly divide the image into a pre-defined number of grids and then learn to associate each pixel with its surrounding grids. However, simply applying a series of convolution operations with limited receptive fields can only implicitly perceive the relations between the pixel and its surrounding grids. Consequently, existing methods often fail to provide an effective context when inferring the association map. To remedy this issue, we propose a novel textbf{A}ssociation textbf{I}mplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids. The proposed AI module directly implants the features of grid cells to the surrounding of its corresponding central pixel, and conducts convolution on the padded window to adaptively transfer knowledge between them. With such an implantation operation, the network could explicitly harvest the pixel-grid level context, which is more in line with the target of superpixel segmentation comparing to the pixel-wise relation. Furthermore, to pursue better boundary precision, we design a boundary-perceiving loss to help the network discriminate the pixels around boundaries in hidden feature level, which could benefit the subsequent inferring modules to accurately identify more boundary pixels. Extensive experiments on BSDS500 and NYUv2 datasets show that our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
Wireless Capsule Endoscopy (WCE) is a relatively new technology to record the entire GI trace, in vivo. The large amounts of frames captured during an examination cause difficulties for physicians to review all these frames. The need for reducing the reviewing time using some intelligent methods has been a challenge. Polyps are considered as growing tissues on the surface of intestinal tract not inside of an organ. Most polyps are not cancerous, but if one becomes larger than a centimeter, it can turn into cancer by great chance. The WCE frames provide the early stage possibility for detection of polyps. Here, the application of simple linear iterative clustering (SLIC) superpixel for segmentation of polyps in WCE frames is evaluated. Different SLIC superpixel numbers are examined to find the highest sensitivity for detection of polyps. The SLIC superpixel segmentation is promising to improve the results of previous studies. Finally, the superpixels were classified using a support vector machine (SVM) by extracting some texture and color features. The classification results showed a sensitivity of 91%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا