No Arabic abstract
The information carrier of modern technologies is the electron charge whose transport inevitably generates Joule heating. Spin-waves, the collective precessional motion of electron spins, do not involve moving charges and thus avoid Joule heating. In this respect, magnonic devices in which the information is carried by spin-waves attract interest for low-power computing. However implementation of magnonic devices for practical use suffers from low spin-wave signal and on/off ratio. Here we demonstrate that cubic anisotropic materials can enhance spin-wave signals by improving spin-wave amplitude as well as group velocity and attenuation length. Furthermore, cubic anisotropic material shows an enhanced on/off ratio through a laterally localized edge mode, which closely mimics the gate-controlled conducting channel in traditional field-effect transistors. These attractive features of cubic anisotropic materials will invigorate magnonics research towards wave-based functional devices.
The optical magnetoelectric effect, which is an inherent attribute of the spin excitations in multiferroics, drastically changes their optical properties compared to conventional materials where light-matter interaction is expressed only by the dielectric permittivity and magnetic permeability. Our polarized absorption experiments performed on multiferroic Ca2CoSi2O7 and Ba2CoGe2O7 in the THz spectral range demonstrate that such magnetoeletric spin excitations show quadrochroism, i.e. they have different colours for all the four combinations of the two propagation directions (forward or backward) and the two orthogonal polarizations of a light beam. We found that quadrochroism can give rise to peculiar optical properties, such as one-way transparency and zero-reflection of these excitations, which can open a new horizon in photonics. One-way transparency is also related to the static magnetoelectric phenomena, hence, these optical studies can provide guidelines for the systematic synthesis of new materials with large dc magnetoelectric effect.
The Organic Materials Database (OMDB) is an open database hosting about 22,000 electronic band structures, density of states and other properties for stable and previously synthesized 3-dimensional organic crystals. The web interface of the OMDB offers various search tools for the identification of novel functional materials such as band structure pattern matching and density of states similarity search. In this work the OMDB is extended to include magnetic excitation properties. For inelastic neutron scattering we focus on the dynamical structure factor $S(mathbf{q},omega)$ which contains information on the excitation modes of the material. We introduce a new dataset containing atomic magnetic moments and Heisenberg exchange parameters for which we calculate the spin wave spectra and dynamic structure factor with linear spin wave theory and atomistic spin dynamics. We thus develop the materials informatics tools to identify novel functional organic and metalorganic magnets.
Recent advances in antiferromagnetic spin dynamics using rare-earth (RE) and transition-metal (TM) ferrimagnets have attracted much interest for spintronic devices with a high speed and density. In this study, the spin wave properties in the magnetostatic backward volume mode and surface mode in RE-TM ferrimagnetic $Gd_{x}Co_{1-x}$ films with various composition x are investigated using spin wave spectroscopy. The obtained group velocity and attenuation length are well explained by the ferromagnet-based spin wave theory when the composition of $Gd_{x}Co_{1-x}$ is far from the compensation point.
Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems.
We report ultra-low intrinsic magnetic damping in Co$_{text{25}}$Fe$_{text{75}}$ heterostructures, reaching the low $10^{-4}$ regime at room temperature. By using a broadband ferromagnetic resonance technique, we extracted the dynamic magnetic properties of several Co$_{text{25}}$Fe$_{text{75}}$-based heterostructures with varying ferromagnetic layer thickness. By estimating the eddy current contribution to damping, measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26,nm thick sample to be $$alpha_{mathrm{0}} lesssim 3.18times10^{-4}$. Furthermore, using Brillouin light scattering microscopy we measured spin-wave propagation lengths of up to $(21pm1),mathrm{mu m}$ in a 26 nm thick Co$_{text{25}}$Fe$_{text{75}}$ heterostructure at room temperature, which is in excellent agreement with the measured damping.