Defects controlled hole doping and multi-valley transport in SnSe single crystals


Abstract in English

SnSe is a promising thermoelectric material with record-breaking figure of merit, textit{i.e., ZT}. As a semiconductor, optimal electrical dosage is the key challenge to maximize textit{ZT} in SnSe. However, to date a comprehensive understanding of the electronic structure and most critically, the self-hole doping mechanism in SnSe is still absent. Here, we report the highly anisotropic electronic structure of SnSe investigated by both angle-resolved photoemission spectroscopy and quantum transport, in which a unique textit{pudding-mold} shaped valence band with quasi-linear energy dispersion is revealed. We prove that the electrical doping in SnSe is extrinsically controlled by the formation of SnSe$_{2}$ micro-domains induced by local phase segregation. Using different growth methods and conditions, we have achieved wide tuning of hole doping in SnSe, ranging from intrinsic semiconducting behaviour to typical metal with carrier density of $1.23times 10^{18}$ cm$^{-3}$ at room temperature. The resulting multi-valley transport in $p$-SnSe is characterized by non-saturating weak localization along the armchair axis, due to strong intervalley scattering enhanced by in-plane ferroelectric dipole field of the puckering lattice. Strikingly, quantum oscillations of magnetoresistance reveal three-dimensional electronic structure with unusual interlayer coupling strength in $p$-SnSe, which is correlated to the interweaving of SnSe individual layers by unique point dislocation defects. Our results suggest that defect engineering may provide versatile routes in improving the thermoelectric performance of the SnSe family.

Download