Do you want to publish a course? Click here

The brightness of the Red Giant Branch tip: Theoretical framework, a set of reference models, and predicted observables

73   0   0.0 ( 0 )
 Added by Aldo Serenelli
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The brightness of the tip of the Red Giant Branch is a useful reference quantity for several fields of astrophysics. An accurate theoretical prediction is needed for such purposes. Aims. We intend to provide a solid theoretical prediction for it, valid for a reference set of standard physical assumptions, and mostly independent of numerical details. We examine the dependence on physical assumptions and numerical details, for a wide range of metallicities and masses, and based on two different stellar evolution codes. We adjust differences between the codes to treat the physics as identical as possible. After we have succeeded in reproducing the tip brightness between the codes, we present a reference set of models based on the most up to date physical inputs, but neglecting microscopic diffusion, and convert theoretical luminosities to observed infrared colours suitable for observations of resolved populations of stars and include analytic fits to facilitate their use. We find that consistent use of updated nuclear reactions, including an appropriate treatment of the electron screening effects, and careful time-stepping on the upper red giant branch are the most important aspects to bring initially discrepant theoretical values into agreement. Small, but visible differences remain unexplained for very low metallicities and mass values at and above 1.2 Msun, corresponding to ages younger than 4 Gyr. The colour transformations introduce larger uncertainties than the differences between the two stellar evolution codes. We demonstrate that careful stellar modeling allows an accurate prediction for the luminosity of the Red Giant Branch tip. Differences to empirically determined brightnesses may result either from insufficient colour transformations or from deficits in the constitutional physics. We present the best-tested theoretical reference values to date.



rate research

Read More

Theoretical predictions of Red Giant Branch stars effective temperatures, colors, luminosities and surface chemical abundances are a necessary tool for the astrophysical interpretation of the visible--near infrared integrated light from unresolved stellar populations, the Color-Magnitude-Diagrams of resolved stellar clusters and galaxies, and spectroscopic determinations of red giant chemical abundances. On the other hand, the comparison with empirical constraints provides a stringent test for the accuracy of present generations of red giant models. We review the current status of red giant stars modelling, discussing in detail the still existing uncertainties affecting the model input physics (e.g., electron conduction opacity, treatment of the superadiabatic convection), and the adequacy of the physical assumptions built into the model computations. We compare theory with several observational features of the Red Giant Branch in galactic globular clusters, such as the luminosity function bump, the luminosity of the Red Giant Branch tip and the envelope chemical abundance patterns, to show the level of agreement between current stellar models and empirical data concerning the stellar luminosities, star counts, and surface chemical abundances.
In this paper JK_s data from the VISTA Magellanic Cloud (VMC) survey are used to investigate the tip of the red giant branch (TRGB) as a distance indicator. A linear fit to recent theoretical models is used which reads M_{K_s} = -4.196 -2.013 (J-K_s), valid in the colour range 0.75 < (J-K_s) < 1.3 mag and in the 2MASS system. The observed TRGB is found based on a classical first-order and a second-order derivative filter applied to the binned luminosity function using the sharpened magnitude that takes the colour term into account. Extensive simulations are carried out to investigate any biases and errors in the derived distance modulus (DM). Based on these simulations criteria are established related to the number of stars per bin in the 0.5 magnitude range below the TRGB and related to the significance with which the peak in the filter response curve is determined such that the derived distances are unbiased. The DMs based on the second-order derivative filter are found to be more stable and are therefore adopted, although this requires twice as many stars per bin. The TRGB method is applied to specific lines-of-sight where independent distance estimates exist, based on detached eclipsing binaries in the LMC and SMC, classical Cepheids in the LMC, RR Lyrae stars in the SMC, and fields in the SMC where the star formation history (together with reddening and distance) has been derived from deep VMC data. The analysis shows that the theoretical calibration is consistent with the data, that the systematic error on the DM is approximately 0.045 mag, and that random errors of 0.015 mag are achievable. Reddening is an important element in deriving the distance: we find mean DMs ranging from 18.92 (for a typical E(B-V) of 0.15 mag) to 19.07 mag (E(B-V) about 0.04) for the SMC, and ranging from 18.48 (E(B-V) about 0.12 mag) to 18.57 mag (E(B-V) about 0.05) for the LMC.
We examine the reliability of the tip of the red giant branch (TRGB) as a distance indicator for stellar populations with different star formation histories (SFHs) when photometric errors and completeness corrections at the TRGB are small. In general, the TRGB-distance method is insensitive to the shape of the SFH except when it produces a stellar population with a significant component undergoing the red giant branch phase transition. The I-band absolute magnitude of the TRGB for the middle and late stages of this transition (~1.3-1.7 Gyr) is several tenths of a magnitude fainter than the canonical value of M_I ~ -4.0. If more than 30% of all stars formed over the lifetime of the Universe are formed at these ages, then the distance could be overestimated by 10-25%. Similarly, the TRGB-distance method is insensitive to the metallicity distribution of stars formed except when the average metallicity is greater than <[Fe/H]> = -0.3. If more than ~70% of all stars formed have [Fe/H] > -0.3, the distance could be overestimated by ~10-45%. We find that two observable quantities, the height of the discontinuity in the luminosity function at the TRGB and the median (V-I)_0 at M_I = -3.5 can be used to test if the aforementioned age and metallicity conditions are met.
144 - Taylor J. Hoyt 2021
A zero point calibration of the Red Giant Branch Tip (TRGB) in the $I$-band is determined from OGLE photometry of the Magellanic Clouds (MCs). It is shown that TRGB measurements made in star-forming regions, with concomitantly high quantities of gas and dust, are less precise and biased to fainter magnitudes, as compared to the same measurements made in quiescent regions. Once these low accuracy fields are excluded from consideration, the TRGB can be used for the first time to constrain the three-dimensional plane geometry of the LMC. Composite CMDs are constructed for the SMC and LMC from only those fields with well-defined TRGB features, and the highest accuracy TRGB zero point calibration to date is presented. The $I$-band TRGB magnitude is measured to be flat over the color range $ 1.45 < (V-I)_0 < 1.95$ mag, with a modest slope introduced when including metal-rich (up to $(V-I)_0 = 2.2$ mag) Tip stars into the fit. Both the flat, blue zero point and the shallow slope calibration are consistent with the canonical value of $-4.05$ mag for the old, metal-poor TRGB, and would appear to resolve a recent debate in the literature over the methods absolute calibration.
PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ~20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between young stars, HII regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ~4 to ~15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا