Do you want to publish a course? Click here

A Consolidated Framework of the Color Variability in Blazars: Long-Term Optical/Near-Infrared Observations of 3C 279

110   0   0.0 ( 0 )
 Added by Jedidah Isler
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluate the optical/near-infrared (OIR) color variability of 3C 279 in both gamma-ray flaring and non-flaring states over 7-year timescales using the Small and Medium Aperture Research Telescope System (SMARTS) in Cerro Tololo, Chile and gamma-ray fluxes obtained from the Fermi Gamma-ray Space Telescope. This observing strategy differs from previous blazar color variability studies in two key ways: 1) the reported color variability is assessed across optical through near-infrared wavelengths, and 2) the color variability is assessed over timescales significantly longer than an individual flare or ground-based observing season. We highlight 3C 279 because of its complex color variability, which is difficult to reconcile with the simple redder when brighter behavior often associated with Flat Spectrum Radio Quasar (FSRQ) color variability. We suggest that the observed OIR color changes depend on a combination of the jet and disk emission. We parameterize this behavior in terms of a single variable, $zeta^m_n$, representing a smooth transition from disk-dominated, to a mixed contribution, to a jet-dominated system, which provides an explanation of the long-term OIR color variability in the same blazar over time. This suggests a general scheme that could apply to OIR color variability in other blazars.



rate research

Read More

We present long term optical and near infrared flux variability analysis of 37 blazars detected in the $gamma$-ray band by the {it Fermi Gamma-Ray Space Telescope}. Among them, 30 are flat spectrum radio quasars (FSRQs) and 7 are BL Lac objects (BL Lacs). The photometric data in the optical (BVR) and infrared (JK) bands were from the Small and Moderate Aperture Research Telescope System acquired between 2008$-$2018. From cross-correlation analysis of the light curves at different wavelengths, we did not find significant time delays between variations at different wavelengths, except for three sources, namely PKS 1144$-$379, PKS B1424$-$418 and 3C 273. For the blazars with both B and J-band data, we found that in a majority of FSRQs and BL Lacs, the amplitude of variability ($sigma_m$) in the J-band is larger than B-band consistent with the dominance of the non-thermal jet over the thermal accretion disc component. Considering FSRQs and BL Lacs as a sample, there are indications of $sigma_m$ to increase gradually towards longer wavelengths in both, however, found to be statistically significant only between B and J-bands in FSRQs. In the B$-$J v/s J colour magnitude diagram, we noticed complicated spectral variability patterns. Most of the objects showed a redder when brighter (RWB) behaviour. Few objects showed a bluer when brighter (BWB) trend, while in some objects both BWB and RWB behaviours were noticed. These results on flux and colour characteristics indicate that the jet emission of FSRQs and BL Lacs is indistinguishable.
The long-term optical, X-ray and $gamma$-ray data of blazar 3C 279 have been compiled from $Swift$-XRT, $RXTE$ PCA, $Fermi$-LAT, SMARTS and literature. The source exhibits strong variability on long time scales. Since 1980s to now, the optical $R$ band light curve spans above 32 yr, and a possible 5.6-yr-long quasi-periodic variation component has been found in it. The optical spectral behavior has been investigated. In the optical band, the mean spectral index is -1.71. The source exhibits an obvious special spectral behavior. In the low state, the source shows a clear bluer-when-brighter behavior in a sense that the optical spectrum turns harder (flatter) when the brightness increases. While in the high state, the optical spectrum is stable, that means the source spectral index does not vary with the brightness. The correlation analysis has been performed among optical, X-ray and $gamma$-ray energy bands. The result indicates that the variations of $gamma$-ray and X-ray bands are well correlated without time delay on the time scale of days, and their variations exhibit weak correlations with those of optical band. The variations, especial outbursts, are simultaneous, but the magnitude of variations is disproportionate. The detailed analysis reveals that the main outbursts exhibit strong correlations in different $gamma$-ray, X-ray and optical bands.
647 - Gopal Bhatta 2021
Optical observations of a sample of 12 $gamma$-ray bright blazars from four optical data archives, AAVSO, SMARTS, Catalina, and Steward Observatory, are compiled to create densely sampled light curves spanning more than a decade. As a part of the bla zar multi-wavelength studies, several methods of analyses, e. g., flux distribution and RMS-flux relation, are performed on the observations with an aim to compare the results with the similar ones in the gama-ray band presented in Bhatta & Dhital 2020. It is found that, similar to $gamma$-ray band, blazars display significant variability in the optical band that can be characterized with log-normal flux distribution and a power-law dependence of RMS on flux. It could be an indication of possible inherent linear RMS-flux relation, yet the scatter in the data does not allow to rule out other possibilities. When comparing variability properties in the two bands, the blazars in the gama-rays are found to exhibit stronger variability with steeper possible linear RMS-flux relation and the flux distribution that is more skewed towards higher fluxes. The cross-correlation study shows that except for the source 3C 273, the overall optical and the $gamma$-ray emission in the sources are highly correlated, suggesting a co-spatial existence of the particles responsible for both the optical and $gamma$-ray emission. Moreover, the sources S5 0716+714, Mrk 421, Mrk 501, PKS 1424-418 and PKS 2155-304 revealed possible evidence for quasi-periodic oscillations in the optical emission with the characteristic timescales, which are comparable to those in the $gamma$-ray band detected in our previous work.
We have monitored the flat spectrum radio quasar, 3C 279, in the optical $B$, $V$, $R$ and $I$ passbands from 2018 February to 2018 July for 24 nights, with a total of 716 frames, to study flux, colour and spectral variability on diverse timescales. 3C,279 was observed using seven different telescopes: two in India, two in Argentina, two in Bulgaria and one in Turkey to understand the nature of the source in optical regime. The source was found to be active during the whole monitoring period and displayed significant flux variations in $B$, $V$, $R$, and $I$ passbands. Variability amplitudes on intraday basis varied from 5.20% to 17.9%. A close inspection of variability patterns during our observation cycle reveals simultaneity among optical emissions from all passbands. During the complete monitoring period, progressive increase in the amplitude of variability with frequency was detected for our target. The amplitudes of variability in $B$, $V$, $R$ and $I$ passbands have been estimated to be 177%, 172%, 171% and 158%, respectively. Using the structure function technique, we found intraday timescales ranging from $sim 23$ minutes to about 115 minutes. We also studied colour-magnitude relationship and found indications of mild bluer-when-brighter trend on shorter timescales. Spectral indices ranged from 2.3 to 3.0 with no clear trend on long term basis. We have also generated spectral energy distributions for 3C,279 in optical $B$, $V$, $R$ and $I$ passbands for 17 nights. Finally, possible emission mechanisms causing variability in blazars are discussed briefly.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا