No Arabic abstract
We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the same fixed initial state and can also be optionally constrained by a fixed final state. We develop a stochastic path integral description for the continuous quantum measurement and use it to calculate the considered correlators. Exact analytic results are possible in the case of ideal measurements of equal strength and are also shown to agree with solutions obtained using the Fokker-Planck equation. For a more general case with decoherence effects and inefficiency, we use a diagrammatic approach to find the correlators perturbatively in the quantum efficiency. We also calculate the state correlators for the quantum trajectories which are extracted from readout signals measured in a transmon qubit experiment, by means of the quantum Bayesian state update. We find an excellent agreement between the correlators based on the experimental data and those obtained from our analytical and numerical results.
The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-$frac{1}{2}$ system simultaneously interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find the probabilities of the four possible outcomes of the measurements. The measurement is found to be non-ideal, as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component, and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we give an operational interpretation of the process as a generalised quantum measurement, and show that it is fully informative: The expected value of the measured spin components can be found with arbitrary precision for sufficiently many runs of the experiment.
We address the statistics of a simultaneous CWLM of two non-commuting variables on a few-state quantum system subject to a conditioned evolution. Both conditioned quantum measurement and that of two non-commuting variables differ drastically for either classical or quantum projective measurement, and we explore the peculiarities brought by the combination of the two. We put forward a proper formalism for the evaluation of the distributions of measurement outcomes. We compute and discuss the statistics in idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle ${cal O}^2_1+{cal O}^2_2=1$ in the distribution of measurement outcomes in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically anomalously large values of the time-integrated output cumulants in the limit of short measurement times(sudden jump) and zero overlap between initial and final states, and give the detailed distributions. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the conditioned measurement can be accurately predicted even if they are small.
As an application of the simultaneous and continuous measurement of noncommutative observables formulated in our previous paper [C. Jiang and G. Watanabe, Phys. Rev. A 102, 062216 (2020)], we propose a scheme to generate the pure ideal quadrature squeezed state in an one-dimensional harmonic oscillator system by the feedback control based on such type of measurement of noncommutative quadrature observables. We find that, by appropriately setting the strengths of the measurement and the feedback control, the pure ideal quadrature squeezed state with arbitrary squeezedness can be produced. This is in contrast to the scheme based on the single-observable measurement and the feedback control, where only nonideal squeezed state with squeezing of the measured quadrature are produced.
Sequential weak measurements of non-commuting observables is not only fundamentally interesting in quantum measurement but also shown potential in various applications. The previous reported methods, however, can only realize limited sequential weak measurements experimentally. In this Letter, we propose the realization of sequential measurements of arbitrary observables and experimentally demonstrate for the first time the measurement of sequential weak values of three non-commuting Pauli observables by using genuine single photons. The results presented here will not only improve our understanding of quantum measurement, e.g. testing quantum contextuality, macroscopic realism, and uncertainty relation, but also have many applications such as realizing counterfactual computation, direct process tomography, direct measurement of the density matrix and unbounded randomness certification.
We consider multi-time correlators for output signals from linear detectors, continuously measuring several qubit observables at the same time. Using the quantum Bayesian formalism, we show that for unital (symmetric) evolution in the absence of phase backaction, an $N$-time correlator can be expressed as a product of two-time correlators when $N$ is even. For odd $N$, there is a similar factorization, which also includes a single-time average. Theoretical predictions agree well with experimental results for two detectors, which simultaneously measure non-commuting qubit observables.