Do you want to publish a course? Click here

Inflationary Features and Shifts in Cosmological Parameters from Planck 2015 Data

72   0   0.0 ( 0 )
 Added by Georges Obied
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the relationship between features in the Planck 2015 temperature and polarization data, shifts in the cosmological parameters, and features from inflation. Residuals in the temperature data at low multipole $ell$, which are responsible for the high $H_0approx 70$ km s$^{-1}$Mpc$^{-1}$ and low $sigma_8Omega_m^{1/2}$ values from $ell<1000$ in power-law $Lambda$CDM models, are better fit to inflationary features with a $1.9sigma$ preference for running of the running of the tilt or a stronger $99%$ CL local significance preference for a sharp drop in power around $k=0.004$ Mpc$^{-1}$ in generalized slow roll and a lower $H_0approx 67$ km s$^{-1}$Mpc$^{-1}$. The same in-phase acoustic residuals at $ell>1000$ that drive the global $H_0$ constraints and appear as a lensing anomaly also favor running parameters which allow even lower $H_0$, but not once lensing reconstruction is considered. Polarization spectra are intrinsically highly sensitive to these parameter shifts, and even more so in the Planck 2015 TE data due to an outlier at $ell approx 165$, which disfavors the best fit $H_0$ $Lambda$CDM solution by more than $2sigma$, and high $H_0$ value at almost $3sigma$. Current polarization data also slightly enhance the significance of a sharp suppression of large-scale power but leave room for large improvements in the future with cosmic variance limited $E$-mode measurements.



rate research

Read More

Features during inflation and reionization leave corresponding features in the temperature and polarization power spectra that could potentially explain anomalies in the Planck 2015 data but require a joint analysis to disentangle. We study the interplay between these two effects using a model-independent parametrization of the inflationary power spectrum and the ionization history. Preference for a sharp suppression of large scale power is driven by a feature in the temperature power spectrum at multipoles $ell sim 20$, whereas preference for a component of high redshift ionization is driven by a sharp excess of polarization power at $ell sim 10$ when compared with the lowest multipoles. Marginalizing inflationary freedom does not weaken the preference for $z gtrsim 10$ ionization, whereas marginalizing reionization freedom slightly enhances the preference for an inflationary feature but can also mask its direct signature in polarization. The inflation and reionization interpretation of these features makes predictions for the polarization spectrum which can be tested in future precision measurements especially at $10lesssim ell lesssim 40$.
We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.
The six parameters of the standard $Lambda$CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We investigate these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium $tau$, the baryon density $omega_{rm b}$, the matter density $omega_{rm m}$, the angular size of the sound horizon $theta_*$, the spectral index of the primordial power spectrum, $n_{rm s}$, and $A_{rm s}e^{-2tau}$ (where $A_{rm s}$ is the amplitude of the primordial power spectrum), we examine the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment $ell<800$ in the Planck temperature power spectrum) and an all angular-scale data set ($ell<2500$ Planck temperature power spectrum), each with a prior on $tau$ of $0.07pm0.02$. We find that the shifts, in units of the 1$sigma$ expected dispersion for each parameter, are ${Delta tau, Delta A_{rm s} e^{-2tau}, Delta n_{rm s}, Delta omega_{rm m}, Delta omega_{rm b}, Delta theta_*} = {-1.7, -2.2, 1.2, -2.0, 1.1, 0.9}$, with a $chi^2$ value of 8.0. We find that this $chi^2$ value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2$sigma$ in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing $ell<800$ instead to $ell>800$, or splitting at a different multipole, yields similar results. We examine the $ell<800$ model residuals in the $ell>800$ power spectrum data and find that the features there... [abridged]
We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.
We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted base $Lambda$CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $Omega_c h^2 = 0.120pm 0.001$, baryon density $Omega_b h^2 = 0.0224pm 0.0001$, scalar spectral index $n_s = 0.965pm 0.004$, and optical depth $tau = 0.054pm 0.007$ (in this abstract we quote $68,%$ confidence regions on measured parameters and $95,%$ on upper limits). The angular acoustic scale is measured to $0.03,%$ precision, with $100theta_*=1.0411pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4pm 0.5)$km/s/Mpc; matter density parameter $Omega_m = 0.315pm 0.007$; and matter fluctuation amplitude $sigma_8 = 0.811pm 0.006$. We find no compelling evidence for extensions to the base-$Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{rm eff} = 2.99pm 0.17$, and the neutrino mass is tightly constrained to $sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$Lambda$CDM at over $2,sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا