We use the concept of two-particle probability amplitude to derive the stochastic evolution equation for two-particle four-point correlations in tight-binding networks affected by diagonal dynamic disorder. It is predicted that in the presence of dynamic disorder, the average spatial wave function of indistinguishable particle pairs delocalizes and populates all network sites including those which are weakly coupled in the absence of disorder. Interestingly, our findings reveal that correlation elements accounting for particle indistinguishability are immune to the impact of dynamic disorder.